PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 4 | 555-561
Article title

Multiscale analysis in nonlinear thermal diffusion problems in composite structures

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of this paper is to analyze the asymptotic behavior of the solution of a nonlinear problem arising in the modelling of thermal diffusion in a two-component composite material. We consider, at the microscale, a periodic structure formed by two materials with different thermal properties. We assume that we have nonlinear sources and that at the interface between the two materials the flux is continuous and depends in a dynamical nonlinear way on the jump of the temperature field. We shall be interested in describing the asymptotic behavior of the temperature field in the periodic composite as the small parameter which characterizes the sizes of our two regions tends to zero. We prove that the effective behavior of the solution of this system is governed by a new system, similar to Barenblatt’s model, with additional terms capturing the effect of the interfacial barrier, of the dynamical boundary condition, and of the nonlinear sources.
Publisher

Journal
Year
Volume
8
Issue
4
Pages
555-561
Physical description
Dates
published
1 - 8 - 2010
online
22 - 5 - 2010
Contributors
References
  • [1] M. Amar, D. Andreucci, P. Bisegna, R. Gianni, Nonlinear Anal.-Real 6, 367 (2005) http://dx.doi.org/10.1016/j.nonrwa.2004.09.002[Crossref]
  • [2] M. Amar, D. Andreucci, P. Bisegna, R. Gianni, Math. Mod. Meth. Appl. S. 14, 1261 (2004) http://dx.doi.org/10.1142/S0218202504003623[Crossref]
  • [3] G. I. Barenblatt, Y. P. Zheltov, I. N. Kochina, Prikl. Mat. Mekh. 24, 852 (1960)
  • [4] H. Brézis, J. Math. Pure. Appl. 51, 1 (1972)
  • [5] D. Cioranescu, P. Donato, Asymptotic Anal. 1, 115 (1988)
  • [6] D. Cioranescu, P. Donato, H. Ene, Math. Method. Appl. Sci. 19, 857 (1996) http://dx.doi.org/10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D[Crossref]
  • [7] D. Cioranescu, P. Donato, R. Zaki, Asymptotic Anal. 53, 209 (2007)
  • [8] D. Cioranescu, J. Saint Jean Paulin, J. Math. Anal. Appl. 71, 590 (1979) http://dx.doi.org/10.1016/0022-247X(79)90211-7[Crossref]
  • [9] C. Conca, J.I. Díaz, C. Timofte, Math. Mod. Meth. Appl. S. 13, 1437 (2003) http://dx.doi.org/10.1142/S0218202503002982[Crossref]
  • [10] C. Conca, P. Donato, RAIRO-Math. Model. Num. 22, 561 (1988)
  • [11] C. Conca, F. Murat, C. Timofte, ESAIM-Math. Model. Num. 37, 773 (2003) http://dx.doi.org/10.1051/m2an:2003055[Crossref]
  • [12] H. I. Ene, D. Polisevski, Z. Angew. Math. Phys. 53, 1052 (2002) http://dx.doi.org/10.1007/PL00013849[Crossref]
  • [13] M. Pennacchio, G. Savaré, P.C. Franzone, SIAM J. Math. Anal. 37, 1333–1370 (2005) http://dx.doi.org/10.1137/040615249[Crossref]
  • [14] L. Tartar, Problèmes d’homogénéisation dans les équations aux dérivées partielles (Cours Peccot, Collège de France, 1977)
  • [15] C. Timofte, Acta Math. Sci. 29B, 74 (2009)
  • [16] C. Timofte, Z. Angew. Math. Me. 87, 406 (2007) http://dx.doi.org/10.1002/zamm.200610324[Crossref]
  • [17] C. Timofte, Acta Phys. Pol. B 38, 2433 (2007)
  • [18] C. Timofte, Acta Phys. Pol. B 39, 2811 (2008)
  • [19] M. Veneroni, Math. Method. Appl. Sci. 29, 1631 (2006) http://dx.doi.org/10.1002/mma.740[Crossref]
  • [20] W. Wang, J. Duan, Commun. Math. Phys. 275, 163 (2007) http://dx.doi.org/10.1007/s00220-007-0301-8[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0141-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.