PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 3 | 273-282
Article title

Double passage of electromagnetic waves through magnetized plasma: approximation of independent normal waves

Content
Title variants
Languages of publication
EN
Abstracts
EN
Polarization properties of electromagnetic waves, double-passed through magnetized plasma, are studied. Analyses are performed in the case of non-interacting normal modes, propagating in homogeneous and weakly inhomogeneous plasmas, and for three kinds of reflectors: metallic plane, 2D corner retro-reflector (2D-CR), and cubic corner retro-reflector (CCR). It is shown that an electromagnetic wave, reflected from a metallic plane and from a CCR, contains only “velocity-preserving” channels, whose phases are doubled in comparison with those of a single-passage propagation. At the same time, an electromagnetic wave reflected from a 2D-CR is shown to contain both “velocity-preserving” and “velocity-converting” channels, the latter converting the fast wave into the slow one and vice-versa. One characteristic feature of “velocity-converting” channels is that they reproduce the initial polarization state near the source, which might be of practical interest for plasma interferometry. In the case of circularly polarized modes, “velocity-preserving” channels completely disappear, and only “velocity-converting” channels are to be found.
Publisher

Journal
Year
Volume
8
Issue
3
Pages
273-282
Physical description
Dates
published
1 - 6 - 2010
online
24 - 4 - 2010
Contributors
author
author
  • Institute of Physics, Maritime University of Szczecin, 1-2 Waly Chrobrego, Szczecin, 70-500, Poland, bobi@am.szczecin.pl
References
  • [1] Yu. A. Kravtsov, Soviet Physics - Doklady 13, 1125 (1969)
  • [2] Yu. A. Kravtsov, O. N. Naida, A. A. Fuki, Phys.-Usp.+ 39, 129 (1996) http://dx.doi.org/10.1070/PU1996v039n02ABEH000131[Crossref]
  • [3] A. A. Fuki, Yu. A. Kravtsov, O. N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordonand Breach, London, New York, 1997)
  • [4] Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, Berlin 1990)
  • [5] Yu. A. Kravtsov, Geometrical Optics in Engineering Physics (Alpha Sci. Int., London 2005)
  • [6] Yu. A. Kravtsov, B. Bieg, K. Yu. Bliokh, J. Opt. Soc. Am. A 24, 3388 (2007) http://dx.doi.org/10.1364/JOSAA.24.003388[Crossref]
  • [7] Z. H. Czyz, B. Bieg, Yu. A. Kravtsov, Phys. Let. A 368, 101 (2007) http://dx.doi.org/10.1016/j.physleta.2007.03.055[Crossref]
  • [8] M. Born, E. Wolf, Principles of Optics, 6th corr. ed. (Cambridge University Press, Cambridge, Oxford 1997)
  • [9] M. M. Popov, Vestnik Leningradskogo Universiteta 22, 44 (1969) (in Russian)
  • [10] V. M. Babich, V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer Verlag, Berlin, 1990)
  • [11] S. E. Segre, Plasma Phys. Contr. F. 41, R57 (1999) http://dx.doi.org/10.1088/0741-3335/41/2/001[Crossref]
  • [12] V. I. Ginzburg, Propagation of Electromagnetic waves in Plasma (Gordonand Breach, New York, 1970)
  • [13] W. P. Allis, S. J. Buchsbaum, A. Bers, Waves in Anisotropic Plasma (MIT Press, Cambridge 1963)
  • [14] S. Huard, Polarization of Light (John Willey and Sons, Masson 1997)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0128-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.