Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 3 | 480-489

Article title

Coupled tensorial form for atomic relativistic two-particle operator given in second quantization representation

Content

Title variants

Languages of publication

EN

Abstracts

EN
General formulas of the two-electron operator representing either atomic or effective interactions are given in a coupled tensorial form in relativistic approximation. The alternatives of using uncoupled, coupled and antisymmetric two-electron wave functions in constructing coupled tensorial form of the operator are studied. The second quantization technique is used. The considered operator acts in the space of states of open-subshell atoms.

Publisher

Journal

Year

Volume

8

Issue

3

Pages

480-489

Physical description

Dates

published
1 - 6 - 2010
online
24 - 4 - 2010

Contributors

  • Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108, Vilnius, Lithuania
  • Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108, Vilnius, Lithuania

References

  • [1] C. Froese Fischer, Comput. Phys. Commun. 128, 531 (2000) http://dx.doi.org/10.1016/S0010-4655(99)00532-9[Crossref]
  • [2] P. Bogdanovich, Lith. J. Phys. 44, 135 (2004)
  • [3] F. A. Parpia, Ch. Froese Fischer, I. P. Grant, Comput. Phys. Commun. 175, 745 (2006) http://dx.doi.org/10.1016/j.cpc.2006.07.021[Crossref]
  • [4] S. Fritzsche, Ch. Froese Fischer, G. Gaigalas, Comput. Phys. Commun. 148, 103 (2002) http://dx.doi.org/10.1016/S0010-4655(02)00463-0[Crossref]
  • [5] G. Gaigalas, S. Fritzsche, I. P. Grant, Comput. Phys. Commun. 139,263 (2001) http://dx.doi.org/10.1016/S0010-4655(01)00213-2[Crossref]
  • [6] I. Lindgren, J. Morrison, Atomic Many-Body Theory, 2nd edition (Springer Series in Chemical Physics, Berlin, 1982)
  • [7] C. C. Cannon, A. Derevianko, Phys. Rev. A 69, 030502(R) (2004) http://dx.doi.org/10.1103/PhysRevA.69.030502[Crossref]
  • [8] H. C. Ho, W. R. Johnson, Phys. Rev. A 74, 022510 (2006) http://dx.doi.org/10.1103/PhysRevA.74.022510[Crossref]
  • [9] V. A. Dzuba, V. V. Flambaum, M. G. Kozlov, Phys. Rev. A 54, 3948 (1996) http://dx.doi.org/10.1103/PhysRevA.54.3948[Crossref]
  • [10] W. R. Johnson, Z. W. Liu, J. Sapirstein, Atom. Data Nucl. Data 64,279 (1996) http://dx.doi.org/10.1006/adnd.1996.0024[Crossref]
  • [11] G. Merkelis, J. Kaniauskas, Z. Rudzikas, Lith. J. Phys. 25,21 (1985)
  • [12] A. P. Jucys, A. J. Savukynas, Mathematical Foundations of the Atomic Theory (Mokslas, Vilnius, 1973)
  • [13] B. R. Judd, Operator Techniques in Atomic Spectroscopy (Mc Graw-Hill, New York, 1963)
  • [14] Z. Rudzikas, J. Kaniauskas, Quasispin and Isospin in the Theory of Atom (Mokslas, Vilnius, 1984)
  • [15] A. Bar-Salomand, M. Klapisch, J. Oreg, J. Quant. Spectrosc. Ra. 71, 169 (2001) http://dx.doi.org/10.1016/S0022-4073(01)00066-8[Crossref]
  • [16] G. Gaigalas, Z. Rudzikas, Ch. Froese Fischer, J. Phys. B 30, 3747 (1996) http://dx.doi.org/10.1088/0953-4075/30/17/006[Crossref]
  • [17] G. Merkelis, Phys. Scripta 63, 289 (2001) http://dx.doi.org/10.1238/Physica.Regular.063a00289[Crossref]
  • [18] R. Juršenas, G. Merkelis, Lith. J. Phys. 47, 255 (2007) http://dx.doi.org/10.3952/lithjphys.47303[Crossref]
  • [19] Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge Univ. Press, Cambridge, 1997) http://dx.doi.org/10.1017/CBO9780511524554[Crossref]
  • [20] G. Merkelis, Lith. J. Phys. 44, 91 (2004)
  • [21] A. P. Jucys, A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics, 2nd edition (Mokslas, Vilnius, 1977)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0126-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.