PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 3 | 408-414
Article title

Duffin-Kemmer-Petiau equation in Robertson-Walker space-time

Content
Title variants
Languages of publication
EN
Abstracts
EN
The (1+1)-dimensional Duffin-Kemmer-Petiau (DKP) equation (for spin 0 and 1) in the Robertson-Walker Space-time is solved. The exact solution is then determined for both cases. As an application, the rate of the created particles in the presence of gravity is calculated via the Bogoliubov transformations technique.
Publisher
Journal
Year
Volume
8
Issue
3
Pages
408-414
Physical description
Dates
published
1 - 6 - 2010
online
24 - 4 - 2010
References
  • [1] L. D. Landau, E. M. Lifshitz, Quantum Mechanics-Non-relativistic Theory (Pergamon Press, Oxford, 1977)
  • [2] L. Parker, Phys. Rev. D19, 438 (1979)
  • [3] T. Homma, T. Inamoto, T. Miyazaki, Phys. Rev. D 42, 2049 (1990) http://dx.doi.org/10.1103/PhysRevD.42.2049[Crossref]
  • [4] D. R. Brill, J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957) http://dx.doi.org/10.1103/RevModPhys.29.465[Crossref]
  • [5] V. M. Villalba, Prog. Theor. Phys. 90, 851 (1993) http://dx.doi.org/10.1143/PTP.90.851[Crossref]
  • [6] V. M. Villalba, Int. J. Theor. Phys. 36, 1321 (1997) http://dx.doi.org/10.1007/BF02435926[Crossref]
  • [7] E. Schrodinger, Physica 6, 899 (1939) http://dx.doi.org/10.1016/S0031-8914(39)90091-1[Crossref]
  • [8] L. Parker, Phys. Rev. 183, 1057 (1969) http://dx.doi.org/10.1103/PhysRev.183.1057[Crossref]
  • [9] L. Parker, Phys. Rev. D 3, 346 (1971) http://dx.doi.org/10.1103/PhysRevD.3.346[Crossref]
  • [10] M. Domingos, M. H. Caldeira, Found. Phys. 14, 607 (1984) http://dx.doi.org/10.1007/BF00738744[Crossref]
  • [11] A. O. Barut, I. H. Duru, Phys. Rev. D 36, 3705 (1987) http://dx.doi.org/10.1103/PhysRevD.36.3705[Crossref]
  • [12] D. Parashar, Int. J. Theor. Phys. 30, 1691 (1991) http://dx.doi.org/10.1007/BF00673645[Crossref]
  • [13] Anjana Sinha, R. Royehoudhury, Int. J. Theor. Phys. 33, 1511 (1994) http://dx.doi.org/10.1007/BF00670693[Crossref]
  • [14] C. Y. Cardall, G. M. Fuller, Phys. Rev. D 55, 7960 (1997) http://dx.doi.org/10.1103/PhysRevD.55.7960[Crossref]
  • [15] M. Alimohammadi, A. Shariati, Int. J. Mod. Phys. A 15, 4099 (2000)
  • [16] M. Khorrami, M. Alimohammadi, A. Shariati, Ann. Phys. 304, 91 (2003) http://dx.doi.org/10.1016/S0003-4916(03)00016-2[Crossref]
  • [17] S. Moradi, Int. J. Theor. Phys. 47, 2807 (2008) http://dx.doi.org/10.1007/s10773-008-9713-2[Crossref]
  • [18] D. Gomes, E. Capelas De Oliveira, International Journal of Mathematics and Mathematical Sciences 69, 3775 (2004) http://dx.doi.org/10.1155/S0161171204406565[Crossref]
  • [19] A. Havare, T. Yetkin, M. Korunur, K. Sogut, Nucl. Phys. B 682, 457 (2004) http://dx.doi.org/10.1016/j.nuclphysb.2004.01.016[Crossref]
  • [20] Y. Sucu, N. Unal, J. Math. Phys. 48, 052503 (2007) http://dx.doi.org/10.1063/1.2735442[Crossref]
  • [21] G. Petiau, PhD thesis, University of Paris, Academie Royalede Belgique, Classedes Sciences, Memoires, Collection 8, 16 (1936)
  • [22] R. Y. Duffin, Phys. Rev. 54, 1114 (1938) http://dx.doi.org/10.1103/PhysRev.54.1114[Crossref]
  • [23] N. Kemmer, Proc. R. Soc. Lon. Ser. -A. 173, 91 (1939) http://dx.doi.org/10.1098/rspa.1939.0131[Crossref]
  • [24] L. Chetouani, M. Merad, T. Boudjedaa, A. Lecheheb, Int. J. Theor. Phys. 43, 1147 (2004) http://dx.doi.org/10.1023/B:IJTP.0000048606.29712.13[Crossref]
  • [25] M. Merad, Int. J. Theor. Phys. 46, 2105 (2007) http://dx.doi.org/10.1007/s10773-006-9332-8[Crossref]
  • [26] M. Merad, H. Bada, A. Lecheheb, Czech. J. Phys. 56, 765 (2006) http://dx.doi.org/10.1007/s10582-006-0129-z[Crossref]
  • [27] M. Merad, S. Bensaid, J. Math. Phys. 48, 073515 (2007) http://dx.doi.org/10.1063/1.2747609[Crossref]
  • [28] M. Falek, M. Merad J. Math. Phys. 50, 023508 (2009) http://dx.doi.org/10.1063/1.3076900[Crossref]
  • [29] R. A. Krajcik, M. M. Nieto, Am. J. Phys. 45, 818 (1977) http://dx.doi.org/10.1119/1.11054[Crossref]
  • [30] V. Gribov, Eur. Phys. J. C 10, 71 (1999)
  • [31] J. T. Lunardi, B. M. Pimentel, R. G. Teixeira, J. S. Valverde, Phys. Lett. A 268, 165 (2000) http://dx.doi.org/10.1016/S0375-9601(00)00163-8[Crossref]
  • [32] I. V. Kanatchikov, Rep. Math. Phys. 46, 107 (2000) http://dx.doi.org/10.1016/S0034-4877(01)80013-6[Crossref]
  • [33] Yu. V. Pavlov, Grav. Cosm. 12, 205 (2006)
  • [34] N. D. Birrel, P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982)
  • [35] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)
  • [36] J. T. Lunardi, B. M. Pimentel, R. G. Teixeira, In: A. A. Bytsenko, A. E. Goncalves, B. M. Pimentel (Eds.), Geometrical Aspects of Quantum Fields (World Scientific, Singapore, 2001)111 http://dx.doi.org/10.1142/9789812810366_0010[Crossref]
  • [37] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1980)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0112-y
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.