Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 3 | 369-377

Article title

Separability criteria via wavelet transform on homogenous spaces and projective representations

Content

Title variants

Languages of publication

EN

Abstracts

EN
The intimate connection between the Banach space wavelet reconstruction method for each unitary representation of a given group and homogenous space, and the quantum entanglement description using group theory were both studied in our previous articles. Here, we present a universal description of quantum entanglement using group theory and non-commutative characteristic functions for homogenous space and projective representation of compact groups on Banach spaces for some well known examples, such as: Moyal representation for a spin; Dihedral and Permutation groups.

Publisher

Journal

Year

Volume

8

Issue

3

Pages

369-377

Physical description

Dates

published
1 - 6 - 2010
online
24 - 4 - 2010

Contributors

  • Payame Noor University (PNU), Tabriz, 51746, Iran

References

  • [1] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777(1935) http://dx.doi.org/10.1103/PhysRev.47.777[Crossref]
  • [2] M. N. Nielsen, I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)
  • [3] R.F. Werner, Phys. Rev. A 40, 4277 (1989) http://dx.doi.org/10.1103/PhysRevA.40.4277[Crossref]
  • [4] A. Peres, Phys. Rev. Lett. 77, 1413 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.1413[Crossref]
  • [5] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996) http://dx.doi.org/10.1016/S0375-9601(96)00706-2[Crossref]
  • [6] S. L. Woronowicz, Rep. Math. Phys. 10, 165 (1976) http://dx.doi.org/10.1016/0034-4877(76)90038-0[Crossref]
  • [7] P. Horodecki, Phys. Lett. A 232, 333 (1997) http://dx.doi.org/10.1016/S0375-9601(97)00416-7[Crossref]
  • [8] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.5239[Crossref]
  • [9] M. A. Jafarizadeh, M. Rezaee, S. K. S. Yagoobi, Phys. Rev. A 72, 062106 (2005) http://dx.doi.org/10.1103/PhysRevA.72.062106[Crossref]
  • [10] B. M. Terhal, Phys. Lett. A 271, 319 (2000) http://dx.doi.org/10.1016/S0375-9601(00)00401-1[Crossref]
  • [11] M. A. Jafarizadeh, M. Rezaee, S. Ahadpur, Phys. Rev. A 74, 042335 (2006) http://dx.doi.org/10.1103/PhysRevA.74.042335[Crossref]
  • [12] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Physica A 349, 459 (2005) http://dx.doi.org/10.1016/j.physa.2004.10.028[Crossref]
  • [13] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Int. J. QuantumInf. 3, 3 (2005)
  • [14] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Quantum Inf. Process. 4, 3 (2005) http://dx.doi.org/10.1007/s11128-005-5657-0[Crossref]
  • [15] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Int. J. QuantumInf. 2, 541 (2004) http://dx.doi.org/10.1142/S0219749904000924[Crossref]
  • [16] G. Folland, A course in Abstract Harmonic Analysis (CRC Press, Boca Raton, 1995)
  • [17] J. K. Korbicz, M. Lewenstein, Phys. Rev. A 74, 022318 (2006) http://dx.doi.org/10.1103/PhysRevA.74.022318[Crossref]
  • [18] M. Rezaee, M. A. Jafarizadeh, M. Mirzaee, Int. J. Quantum Inf. 5, 367 (2007) http://dx.doi.org/10.1142/S0219749907002967[Crossref]
  • [19] M. A. Man’ko, V. I. Man’ko, R. Vilela Mendes, J. Phys. A-Math. Gen. 34, 8321 (2001) http://dx.doi.org/10.1088/0305-4470/34/40/309[Crossref]
  • [20] E. B. Davis, Quantum theory of open system (Academic Press, London, 1976)
  • [21] O. Bratteli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics, Volume I, II (Springer, New York, 1979, 1981)
  • [22] M. Mirzaee, M. Rezaee, M. A. Jafarizadeh, Int. J. Theor. Phys. 46, 2326 (2007) http://dx.doi.org/10.1007/s10773-007-9351-0[Crossref]
  • [23] M. Mirzaee, M. Rezaee, M. A. Jafarizadeh, Eur. Phys. J. B 60, 193 (2007) http://dx.doi.org/10.1140/epjb/e2007-00330-1[Crossref]
  • [24] H. G. Feichtinger, K. H. Grochenig, J. Funct. Anal. 86, 308 (1989) http://dx.doi.org/10.1016/0022-1236(89)90055-4[Crossref]
  • [25] Y. Gu, Phys. Rev. A 32, 1310 (1985) http://dx.doi.org/10.1103/PhysRevA.32.1310[Crossref]
  • [26] G. Giedke, B. Kraus, M. Lewenstein, J. I. Cirac, Phys. Rev. Lett. 87, 167904 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.167904[Crossref]
  • [27] G. Cassinelli, G. M. D’Ariano, E. DeVito, A. Levrero, J. Math. Phys. 41, 7940 (2000) http://dx.doi.org/10.1063/1.1323497[Crossref]
  • [28] M. Paini, arXiv:quant-ph/0002078
  • [29] J. M. Bondia, J. C. Varilly, Ann. Phys. 190, 107 (1989) http://dx.doi.org/10.1016/0003-4916(89)90262-5[Crossref]
  • [30] S. Heiss, S. Weigert, Phys. Rev. A 63, 012105 (2001) http://dx.doi.org/10.1103/PhysRevA.63.012105[Crossref]
  • [31] I. Schur, J. Reine. Angew. Math. 139, 155 (1911)
  • [32] P. N. Hoffman, J. F. Humphereys, Projective Representation of the Symmetric Groups (Clarendon Press, Oxford, 1992)
  • [33] R. Brauer, H. Weyl, Am. J. Math. 57, 425 (1935) http://dx.doi.org/10.2307/2371218[Crossref]
  • [34] F. Wilczek, arXiv:hep-th/9806228
  • [35] L. Dornhoff, Group Representation Theory, Volume A (Marcel Dekker, New York, 1971)MR50:458a
  • [36] G. Karpilovesky, Projective Representation of Finite Groups (Marcel Dekker, Ink. New York and Basel, 1985)
  • [37] G. James, M. Liebeck, Representations and Characters of Groups (Cambridge Mathematical Textbooks, Cambridge, 1995)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0103-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.