PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 3 | 369-377
Article title

Separability criteria via wavelet transform on homogenous spaces and projective representations

Content
Title variants
Languages of publication
EN
Abstracts
EN
The intimate connection between the Banach space wavelet reconstruction method for each unitary representation of a given group and homogenous space, and the quantum entanglement description using group theory were both studied in our previous articles. Here, we present a universal description of quantum entanglement using group theory and non-commutative characteristic functions for homogenous space and projective representation of compact groups on Banach spaces for some well known examples, such as: Moyal representation for a spin; Dihedral and Permutation groups.
Publisher
Journal
Year
Volume
8
Issue
3
Pages
369-377
Physical description
Dates
published
1 - 6 - 2010
online
24 - 4 - 2010
References
  • [1] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777(1935) http://dx.doi.org/10.1103/PhysRev.47.777[Crossref]
  • [2] M. N. Nielsen, I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)
  • [3] R.F. Werner, Phys. Rev. A 40, 4277 (1989) http://dx.doi.org/10.1103/PhysRevA.40.4277[Crossref]
  • [4] A. Peres, Phys. Rev. Lett. 77, 1413 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.1413[Crossref]
  • [5] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996) http://dx.doi.org/10.1016/S0375-9601(96)00706-2[Crossref]
  • [6] S. L. Woronowicz, Rep. Math. Phys. 10, 165 (1976) http://dx.doi.org/10.1016/0034-4877(76)90038-0[Crossref]
  • [7] P. Horodecki, Phys. Lett. A 232, 333 (1997) http://dx.doi.org/10.1016/S0375-9601(97)00416-7[Crossref]
  • [8] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.5239[Crossref]
  • [9] M. A. Jafarizadeh, M. Rezaee, S. K. S. Yagoobi, Phys. Rev. A 72, 062106 (2005) http://dx.doi.org/10.1103/PhysRevA.72.062106[Crossref]
  • [10] B. M. Terhal, Phys. Lett. A 271, 319 (2000) http://dx.doi.org/10.1016/S0375-9601(00)00401-1[Crossref]
  • [11] M. A. Jafarizadeh, M. Rezaee, S. Ahadpur, Phys. Rev. A 74, 042335 (2006) http://dx.doi.org/10.1103/PhysRevA.74.042335[Crossref]
  • [12] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Physica A 349, 459 (2005) http://dx.doi.org/10.1016/j.physa.2004.10.028[Crossref]
  • [13] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Int. J. QuantumInf. 3, 3 (2005)
  • [14] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Quantum Inf. Process. 4, 3 (2005) http://dx.doi.org/10.1007/s11128-005-5657-0[Crossref]
  • [15] M. A. Jafarizadeh, M. Mirzaee, M. Rezaee, Int. J. QuantumInf. 2, 541 (2004) http://dx.doi.org/10.1142/S0219749904000924[Crossref]
  • [16] G. Folland, A course in Abstract Harmonic Analysis (CRC Press, Boca Raton, 1995)
  • [17] J. K. Korbicz, M. Lewenstein, Phys. Rev. A 74, 022318 (2006) http://dx.doi.org/10.1103/PhysRevA.74.022318[Crossref]
  • [18] M. Rezaee, M. A. Jafarizadeh, M. Mirzaee, Int. J. Quantum Inf. 5, 367 (2007) http://dx.doi.org/10.1142/S0219749907002967[Crossref]
  • [19] M. A. Man’ko, V. I. Man’ko, R. Vilela Mendes, J. Phys. A-Math. Gen. 34, 8321 (2001) http://dx.doi.org/10.1088/0305-4470/34/40/309[Crossref]
  • [20] E. B. Davis, Quantum theory of open system (Academic Press, London, 1976)
  • [21] O. Bratteli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics, Volume I, II (Springer, New York, 1979, 1981)
  • [22] M. Mirzaee, M. Rezaee, M. A. Jafarizadeh, Int. J. Theor. Phys. 46, 2326 (2007) http://dx.doi.org/10.1007/s10773-007-9351-0[Crossref]
  • [23] M. Mirzaee, M. Rezaee, M. A. Jafarizadeh, Eur. Phys. J. B 60, 193 (2007) http://dx.doi.org/10.1140/epjb/e2007-00330-1[Crossref]
  • [24] H. G. Feichtinger, K. H. Grochenig, J. Funct. Anal. 86, 308 (1989) http://dx.doi.org/10.1016/0022-1236(89)90055-4[Crossref]
  • [25] Y. Gu, Phys. Rev. A 32, 1310 (1985) http://dx.doi.org/10.1103/PhysRevA.32.1310[Crossref]
  • [26] G. Giedke, B. Kraus, M. Lewenstein, J. I. Cirac, Phys. Rev. Lett. 87, 167904 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.167904[Crossref]
  • [27] G. Cassinelli, G. M. D’Ariano, E. DeVito, A. Levrero, J. Math. Phys. 41, 7940 (2000) http://dx.doi.org/10.1063/1.1323497[Crossref]
  • [28] M. Paini, arXiv:quant-ph/0002078
  • [29] J. M. Bondia, J. C. Varilly, Ann. Phys. 190, 107 (1989) http://dx.doi.org/10.1016/0003-4916(89)90262-5[Crossref]
  • [30] S. Heiss, S. Weigert, Phys. Rev. A 63, 012105 (2001) http://dx.doi.org/10.1103/PhysRevA.63.012105[Crossref]
  • [31] I. Schur, J. Reine. Angew. Math. 139, 155 (1911)
  • [32] P. N. Hoffman, J. F. Humphereys, Projective Representation of the Symmetric Groups (Clarendon Press, Oxford, 1992)
  • [33] R. Brauer, H. Weyl, Am. J. Math. 57, 425 (1935) http://dx.doi.org/10.2307/2371218[Crossref]
  • [34] F. Wilczek, arXiv:hep-th/9806228
  • [35] L. Dornhoff, Group Representation Theory, Volume A (Marcel Dekker, New York, 1971)MR50:458a
  • [36] G. Karpilovesky, Projective Representation of Finite Groups (Marcel Dekker, Ink. New York and Basel, 1985)
  • [37] G. James, M. Liebeck, Representations and Characters of Groups (Cambridge Mathematical Textbooks, Cambridge, 1995)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0103-z
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.