PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 3 | 422-431
Article title

Effects of Hall current on unsteady MHD flows of a second grade fluid

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of this present paper is to construct exact solutions corresponding to the motion of magnetohydrodynamic (MHD) fluid in the presence of Hall current, due to cosine and sine oscillations of a rigid plate as well as those induced by an oscillating pressure gradient. A uniform magnetic field is applied transversely to the flow. By using Fourier sine transform steady state and transient solutions are presented. These solutions satisfy the governing equations and all associated initial and boundary conditions. The results for a hydrodynamic second grade fluid can be obtained as a limiting case when B
0 → 0 and for a Newtonian fluid when α
1 → 0.
Publisher

Journal
Year
Volume
8
Issue
3
Pages
422-431
Physical description
Dates
published
1 - 6 - 2010
online
24 - 4 - 2010
Contributors
author
  • Department of Mathematics, University of Sargodha, Sargodha, Pakistan
author
author
  • Department of Mathematics, Quaid-i-Azam University 45320, Islamabad, 44000, Pakistan
References
  • [1] R. S. Rivlin, J. L. Ericksen, J. Ration. Mech. Anal. 4, 323 (1955)
  • [2] K. R. Rajagopal, Int. J. Nonlinear Mech. 17, 369 (1982) http://dx.doi.org/10.1016/0020-7462(82)90006-3[Crossref]
  • [3] K. R. Rajagopal, Acta Mech. 49, 281 (1983) http://dx.doi.org/10.1007/BF01236358[Crossref]
  • [4] K. R. Rajagopal, R. K. Bhatnagar, Acta Mech. 113, 233 (1995) http://dx.doi.org/10.1007/BF01212645[Crossref]
  • [5] C. Corina Fetecau, C. Fectecau, Int. J. Eng. Sci. 43, 781 (2005) http://dx.doi.org/10.1016/j.ijengsci.2004.12.009[Crossref]
  • [6] C. Fectecau, Int. J. Nonlinear Mech. 39, 225 (2004) http://dx.doi.org/10.1016/S0020-7462(02)00170-1[Crossref]
  • [7] M. E. Erdogan, C. E. Imrak, Appl. Math. Model. 31, 170 (2007) http://dx.doi.org/10.1016/j.apm.2005.08.019[Crossref]
  • [8] T. Hayat, S. Asghar, A. M. Siddiqui, J. Eng. Sci. 38, 337 (2000) http://dx.doi.org/10.1016/S0020-7225(99)00034-8[Crossref]
  • [9] T. Hayat, M. Khan, A. M. Siddiqui, S. Asghar, Int. J. Nonlinear Mech. 39, 1621 (2004) http://dx.doi.org/10.1016/j.ijnonlinmec.2002.12.001[Crossref]
  • [10] T. Hayat, M. Khan, M. Ayub, A. M. Siddiqui, Arch. Mech. 57, 403 (2005)
  • [11] R. L. Fosdick, K. R. Rajagopal, Arch. Ration. Mech. An. 70, 145 (1979)
  • [12] J. E. Dunn, K. R. Rajagopal, Int. J. Eng. Sci. 33, 689 (1995) http://dx.doi.org/10.1016/0020-7225(94)00078-X[Crossref]
  • [13] V. J. Rossow, NASA, Report No. 1358, 489 (1958)
  • [14] A. M. Siddiqui, T. Hayat, S. Asghar, Int J. Nonlinear Mech. 34, 895 (1999) http://dx.doi.org/10.1016/S0020-7462(98)00063-8[Crossref]
  • [15] R. Cortell, Chem. Eng. Process. 46, 982 (2007) http://dx.doi.org/10.1016/j.cep.2006.09.008[Crossref]
  • [16] R. Cortell, Phys. Lett. A 357, 298 (2006) http://dx.doi.org/10.1016/j.physleta.2006.04.051[Crossref]
  • [17] R. Cortell, Phys. Lett. A 372, 2431 (2008) http://dx.doi.org/10.1016/j.physleta.2007.08.005[Crossref]
  • [18] R. Cortell, Int. J. Heat Mass Tran. 49, 1851 (2006) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.11.013[Crossref]
  • [19] Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Int J. Nonlinear Mech. 43, 783 (2008) http://dx.doi.org/10.1016/j.ijnonlinmec.2008.04.009[Crossref]
  • [20] A. K. Ghosh, P. Sana, Acta Astronaut. 64, 272 (2009) http://dx.doi.org/10.1016/j.actaastro.2008.07.016[Crossref]
  • [21] M. Khan, Nonlinear Anal.-Real 10, 745 (2009) http://dx.doi.org/10.1016/j.nonrwa.2007.11.001[Crossref]
  • [22] K. R. Rajagopal, In: A. Sequiera (Ed.), On boundary conditions for fluids of the differential type (Plenum press, New York, 1995) 273
  • [23] R. Bandelli, K. R. Rajagopal, G. P. Galdi, Arch. Mech. 47, 661 (1995)
  • [24] I. N. Sneddon, Fourier Transforms (McGraw Hill Book Company, New York, Toronto, London, 1951)
  • [25] I. N. Sneddon, Functional analysis, Encyclopedia of physics, Vol. II (Springer, Berlin, Gottingen, Heidelberg, 1955)
  • [26] I. S. Grandshteyn, I. M. Ryzhik, In: A. Jeffrey (Ed.), Tables of integrals, series and products, 5th edition (Academic Press, San Diego, New york, Bostan, London, Sydney, Toronto, 2000) (translated from Russian)
  • [27] K. Cramer, S. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists (McGraw - Hill, New York, 1973)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0083-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.