Title variants
Languages of publication
Abstracts
A 2D layer of spherical, crystalline Ge nanodots embedded in a SiO2 layer was formed by low pressure chemical vapour deposition combined with furnace oxidation and rapid thermal annealing. The samples were characterized structurally by using transmission electron microscopy and Rutherford back scattering spectrometry, as well as electrically by measuring C-V and I-V characteristics. It was found that formation of a high density Ge dots took place due to oxidation induced Ge segregation. The dots were situated in the SiO2 at the average distance 5–6 nm from the substrate. Strong evidence of charge storage effect in the crystalline Ge-nanodot layer was demonstrated by the hysteresis behavior of the high-frequency C-V curves.
Discipline
- 64.75.Lm: Phase separation and segregation in oxidation(for general surface oxidation studies in surface treatments, see 81.65.Mq)
- 81.07.-b: Nanoscale materials and structures: fabrication and characterization(for structure of nanoscale materials, see 61.46.-w; for nanostructured materials in electrochemistry, see 82.45.Yz; see also 62.23.-c Structural classes of nanoscale systems in mechanical properties of condensed matter)
- 81.07.Bc: Nanocrystalline materials
Journal
Year
Volume
Issue
Pages
57-60
Physical description
Dates
published
1 - 2 - 2010
online
15 - 11 - 2009
Contributors
author
- Belarusian State University, prosp. Nezavisimosti, 4, 220030, Minsk, Belarus, nowikow@biz.by
author
- Belarusian State University, prosp. Nezavisimosti, 4, 220030, Minsk, Belarus, gaiduk@phys.au.dk
References
- [1] L. Rebohle, J. von Borany, H. Fröb, W. Skorupa, Appl. Phys. B 71, 131 (2000) http://dx.doi.org/10.1007/PL00006966[Crossref]
- [2] J. de Blauwe, IEEE T. Nanotechnol. 1, 72 (2002) http://dx.doi.org/10.1109/TNANO.2002.1005428[Crossref]
- [3] S. Tiwari et al., Appl. Phys. Lett. 68, 1377 (1996) http://dx.doi.org/10.1063/1.116085[Crossref]
- [4] S. Tiwari, F. Rana, K. Chan, L. Shi, H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996) http://dx.doi.org/10.1063/1.117421[Crossref]
- [5] P. Normand et al., Appl. Phys. Lett. 83, 168 (2003) http://dx.doi.org/10.1063/1.1588378[Crossref]
- [6] V. Beyer, J. von Borany, Phys. Rev. B 77, 014107 (2008) http://dx.doi.org/10.1103/PhysRevB.77.014107[Crossref]
- [7] T. Baron et al., Appl. Phys. Lett. 83, 1444 (2003) http://dx.doi.org/10.1063/1.1604471[Crossref]
- [8] W. K. Choi et al., Appl. Phys. Lett. 80, 2014 (2002) http://dx.doi.org/10.1063/1.1459760[Crossref]
- [9] A. Kanjilal et al., Appl. Phys. Lett. 82, 1212 (2003) http://dx.doi.org/10.1063/1.1555709[Crossref]
- [10] A. Kanjilal et al., Appl. Phys. A 81, 363 (2005) http://dx.doi.org/10.1007/s00339-004-2924-3[Crossref]
- [11] H. Fukuda, T. Kobayashi, T. Endoh, Y. Ueda, Appl. Surf. Sci. 776, 130 (1998)
- [12] H. Fukuda et al., J. Appl. Phys. 90, 3524 (2001) http://dx.doi.org/10.1063/1.1399024[Crossref]
- [13] B. E. Deal, A. S. Grove, J. Appl. Phys. 36, 3770 (1965) http://dx.doi.org/10.1063/1.1713945[Crossref]
- [14] H. K. Liou, P. Mei, U. Gennser, E. S. Yang, Appl. Phys. Lett. 59, 1200 (1991) http://dx.doi.org/10.1063/1.105502[Crossref]
- [15] Z. Tan, S. K. Samanta, W. J. Yoo, S. Lee, Appl. Phys. Lett. 86, 013107 (2004) http://dx.doi.org/10.1063/1.1846952[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0082-0