As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
We consider a hierarchy of Hamilton operators Ĥ N in finite dimensional Hilbert spaces $$ \mathbb{C}^{2^N } $$. We show that the eigenstates of Ĥ N are fully entangled for N even. We also calculate the unitary operator U N(t) = exp(-Ĥ N t/ħ) for the time evolution and show that unentangled states can be transformed into entangled states using this operator. We also investigate energy level crossing for this hierarchy of Hamilton operators.
International School for Scientific Computing, University of Johannesburg, Auckland Park, 2006, South Africa
References
[1] J. A. Cronin, D. F. Greenberg, V. L. Telegdi, University of Chicago Graduate Problems in Physics (Addison-Wesley, Reading, Massachusetts, 1967)
[2] A. Zrenner et al., Nature 418, 612 (2002) http://dx.doi.org/10.1038/nature00912[Crossref]
[3] R. Deblock, E. Onac, L. Gurevich, L. P. Kouwenhoven, Science 301, 203 (2003) http://dx.doi.org/10.1126/science.1084175[Crossref]
[4] A. Shnirman, D. Mozyrsky, I. Martin, Europhys. Lett. 67, 840 (2004) http://dx.doi.org/10.1209/epl/i2003-10309-6[Crossref]
[5] S. Ashhab, J. R. Johansson, F. Nori, New J. Phys. 8, 103 (2006) http://dx.doi.org/10.1088/1367-2630/8/6/103[Crossref]
[6] L. Faoro, L. Ioffe, Phys. Rev. Lett. 96, 04001 (2006) http://dx.doi.org/10.1103/PhysRevLett.96.047001[Crossref]
[7] A. M. Zagoskin, S. Ashhab, J. R. Johansson, F. Nori, Phys. Rev. Lett. 97, 077001 (2006) http://dx.doi.org/10.1103/PhysRevLett.97.077001[Crossref]
[8] R. M. Angelo, W. F. Wreszinski, Ann. Phys.-New York 322, 769 (2007) http://dx.doi.org/10.1016/j.aop.2007.01.001[Crossref]
[9] A. Pechen, D. Prokhorenko, R. Wu, H. Rabitz, Journal of Physics A: Mathematical and Theoretical 41, 045205 (2008) http://dx.doi.org/10.1088/1751-8113/41/4/045205[Crossref]
[10] M. A. Nielsen, I. L. Chuang, Quantum Computing and Quantum Information (Cambridge University Press, 2000)
[11] W.-H. Steeb, Y. Hardy, Problems and Solutions in Quantum Computing and Quantum Information, second edition (World Scientific, Singapore, 2006)
[12] W.-H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++ Programs (World Scientific, Singpore, 1997)
[13] W.-H. Steeb, Problems and Solutions in Introductory and Advanced Matrix Calculus (World Scientific, Singapore, 2006)
[14] V. Coffman, J. Kundu, W. K. Wootters, Phys. Rev. A 61, 052306 (2000) http://dx.doi.org/10.1103/PhysRevA.61.052306[Crossref]
[15] A. Wong, N. Christensen, Phys. Rev. A 63 044301 (2001) http://dx.doi.org/10.1103/PhysRevA.63.044301
[16] F. Hund, Z. Phys. 40, 742 (1927) http://dx.doi.org/10.1007/BF01400234[Crossref]
[17] J. von Neumann, E. Wigner, Phys. Z. 30, 467 (1929)
[18] W.-H. Steeb, Problems and Solutions in Theoretical and Mathematical Physics, second edition, Volume II: Advanced Level (World Scientific, Singapore, 2003)
[19] W.-H. Steeb, A. J. van Tonder, C. M. Villet, S. J. M. Brits, Found. Phys Lett 1, 147 (1988) http://dx.doi.org/10.1007/BF00661855[Crossref]