Preferences help
enabled [disable] Abstract
Number of results
2009 | 7 | 4 | 813-820
Article title

Noise analysis of coaxial Schottky barrier carbon nanotube fets using non equilibrium Green’s function formalism

Title variants
Languages of publication
The effect of noise on the performance of Schottky Barrier Carbon Nanotube Field Effect Transistors (SB-CNTFETs) has been investigated under various bias conditions. In order to calculate the noise power spectral density, the Non-Equilibrium Green’s Function formalism (NEGF) is used to obtain the transmission coefficient and the number of carriers inside the channel. Results are presented in two sections: In the first section the Hooge’s empirical rule is used to investigate the flicker noise properties of SB-CNTFETs with defects in the gate oxide region, while in the second section the thermal and shot noise properties of SB-CNTFETs are studied. Finally, the best bias points in the ON and OFF states have been suggested according to the total noise power spectral density and the device signal to noise ratio.
Physical description
1 - 12 - 2009
21 - 7 - 2009
  • [1] A. Javey et al., Nat. Mater. 1, 241 (2002)[Crossref]
  • [2] J. Appenzeller et al., IEEE T. Nanotechnol. 1, 184 (2002)[Crossref]
  • [3] J. Guo, S. Datta, M. S. Lundstrom, IEEE T. Electron. Dev. 51, 172 (2004)[Crossref]
  • [4] J. Guo, S. Koswatta, N. Neophytou, M. S. Lundstrom, International Journal of High Speed Electronics and Systems 16, 897 (2006)[Crossref]
  • [5] M. Ishigami et al., Appl. Phys. Lett 88, 203116 (2006)[Crossref]
  • [6] Ya. Blanter, M. Buttiker, Phys. Rep. 336, 1 (2000)[Crossref]
  • [7] L. C. Castro et al., IEEE T. Nanotechnol. 2, 175 (2003)[Crossref]
  • [8] R. Martel et al., Phys. Rev. Lett. 87, 2568051 (2001)[Crossref]
  • [9] D. L. John, L. C. Castro, J. Clifford, D. L. Pulfrey, IEEE T. Nanotechnol. 2, 175 (2003)[Crossref]
  • [10] G. Fiori, G. Iannaccone, G. Klimeck, IEEE T. Electron. Dev. 53, 1782 (2006)[Crossref]
  • [11] S. Datta, In: Proc. IEEE Electron Device Meeting, (2002) 703–706
  • [12] S. Datta, Quantum transport from: atom to transistor (Cambridge University Press, Cambridge, 2005)
  • [13] J. Guo et al., Int. J. Multiscale Com. 2, 257 (2004)[Crossref]
  • [14] R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, J. Appl. Phys. 92, 3730 (2002)[Crossref]
  • [15] X. Tongsheng, L. F. Register, S. K. Banerjee, IEEE T. Nanotechnol. 5, 80 (2006)[Crossref]
  • [16] G. W. Brown, B. W. Lindsay, Solid State Electron. 19, 991 (1976)[Crossref]
  • [17] Z. Ren, PhD thesis, Purdue University, (West Lafayette, USA, 2001)
  • [18] A. K. Raychaudhuri, A. Ghosh, S. Kar, Pramana 58, 343 (2002)[Crossref]
  • [19] K. K. Hung, P. K. Ko, Y. C. Cheng, IEEE T. Electron. Dev. 37, 654 (1990)[Crossref]
  • [20] T. H. Ning, C. T. Sah, Phys. Rev. B 6, 4605 (1972)[Crossref]
  • [21] L. DiCarlo, J. R. Williams, Y. Zhang, D. T. McClure, C. M. Marcus, Phys. Rev. Lett. 100, 156801 (2008)[Crossref]
  • [22] T. Danelle Au, K, Khoo, Rep. EECS-231, University of California at Berkeley (California, 1998)
  • [23] J. Appenzeller et al., IEEE T. Nanotechnol. 6, 368 (2007)[Crossref]
  • [24] Z. Chen et al., IEEE Electr. Device L. 29, 183 (2007)[Crossref]
  • [25] S. Krompiewski, Nanotechnology 18, 485708 (2007)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.