PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2009 | 7 | 4 | 711-720
Article title

The Yang-Mills fields - from the gauge theory to the mechanical model

Content
Title variants
Languages of publication
EN
Abstracts
EN
The paper presents some mechanical models of gauge theories, i.e. gauge fields transposed in a space with a finite number of degree of freedom. The main focus is on how a global symmetry as the BRST one could be transferred in this context. The mechanical Yang-Mills model modified by taking the ghost type variables into account will be considered as an example of nonlinear dynamical systems.
Contributors
  • Dept. of Theoretical Physics, University of Craiova, 13 A. I. Cuza Str., Craiova, 200585, Romania, rconsta@central.ucv.ro
  • Dept. of Theoretical Physics, University of Craiova, 13 A. I. Cuza Str., Craiova, 200585, Romania
References
  • [1] C. Becchi, A. Rouet, R. Stora, Phys. Lett. B 52 (1974) 344 http://dx.doi.org/10.1016/0370-2693(74)90058-6[Crossref]
  • [2] I. V. Tyutin, Gauge invariance in Field Theory and Statistical Mechanics, Lebedev Preprint 39 (1975) unpublished
  • [3] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton Univ. Press, 1992)
  • [4] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, J. Math. Phys. 31, 6 (1990) http://dx.doi.org/10.1063/1.528828[Crossref]
  • [5] R. Constantinescu, L. Tataru, Phys. Lett. B 417, 269 (1998) http://dx.doi.org/10.1016/S0370-2693(97)01356-7[Crossref]
  • [6] R. Constantinescu, C. Ionescu, Int. J. Mod. Phys. A 21, 6629 (2006) http://dx.doi.org/10.1142/S0217751X06034434[Crossref]
  • [7] S. G. Matincan, G. K. Savvidi, N. G. Ter-Arutyunyan-Savvidi, Sov. Phys. JETP-USSR 53, 421 (1981)
  • [8] A. B. Balakin, H. Dehnen, A.E. Zayats, Int. J. Mod. Phys. D 17, 1255 (2008) http://dx.doi.org/10.1142/S0218271808012802[Crossref]
  • [9] G. L. Gerakopoulos, S. Basilakos, G. Contopoulos, Phys. Rev. D 77, 043521 (2008)
  • [10] L. D. Fadeev, V. N. Popov, Phys. Lett. B 25, 29 (1967) http://dx.doi.org/10.1016/0370-2693(67)90067-6[Crossref]
  • [11] G. t’Hooft, Nucl. Phys. B 33, 173 (1971) http://dx.doi.org/10.1016/0550-3213(71)90395-6[Crossref]
  • [12] G. t’Hooft, Nucl. Phys. B 35, 167 (1971) http://dx.doi.org/10.1016/0550-3213(71)90139-8[Crossref]
  • [13] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integral (Mc. Graw-Hill, New York, 1965)
  • [14] B. de Witt, Phys. Rev. 160, 1113 (1967) http://dx.doi.org/10.1103/PhysRev.160.1113[Crossref]
  • [15] A. Babalean, R. Constantinescu, C. Ionescu, J. Phys. A-Math. Gen. 31, 8653 (1998) http://dx.doi.org/10.1088/0305-4470/31/43/008[Crossref]
  • [16] C. Ionescu, Mod. Phys. Lett. A 23, 737 (2008) http://dx.doi.org/10.1142/S0217732308026789[Crossref]
  • [17] T. S. Biro, S. G. Matinyan, B. Muller, Chaos and gauge field theory (World Scientific Lecture Notes in Physics, 1994) 56
  • [18] M. Vittot, J. Phys. A-Math. Gen. 37, 6337 (2004) http://dx.doi.org/10.1088/0305-4470/37/24/011[Crossref]
  • [19] R. Cimpoiasu, V. M. Cimpoiasu, R. Constantinescu, Romanian Journal of Physics 50 (2005) 317
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0041-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.