Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 4 | 711-720

Article title

The Yang-Mills fields - from the gauge theory to the mechanical model

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents some mechanical models of gauge theories, i.e. gauge fields transposed in a space with a finite number of degree of freedom. The main focus is on how a global symmetry as the BRST one could be transferred in this context. The mechanical Yang-Mills model modified by taking the ghost type variables into account will be considered as an example of nonlinear dynamical systems.

Contributors

  • Dept. of Theoretical Physics, University of Craiova, 13 A. I. Cuza Str., Craiova, 200585, Romania
  • Dept. of Theoretical Physics, University of Craiova, 13 A. I. Cuza Str., Craiova, 200585, Romania

References

  • [1] C. Becchi, A. Rouet, R. Stora, Phys. Lett. B 52 (1974) 344 http://dx.doi.org/10.1016/0370-2693(74)90058-6[Crossref]
  • [2] I. V. Tyutin, Gauge invariance in Field Theory and Statistical Mechanics, Lebedev Preprint 39 (1975) unpublished
  • [3] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton Univ. Press, 1992)
  • [4] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, J. Math. Phys. 31, 6 (1990) http://dx.doi.org/10.1063/1.528828[Crossref]
  • [5] R. Constantinescu, L. Tataru, Phys. Lett. B 417, 269 (1998) http://dx.doi.org/10.1016/S0370-2693(97)01356-7[Crossref]
  • [6] R. Constantinescu, C. Ionescu, Int. J. Mod. Phys. A 21, 6629 (2006) http://dx.doi.org/10.1142/S0217751X06034434[Crossref]
  • [7] S. G. Matincan, G. K. Savvidi, N. G. Ter-Arutyunyan-Savvidi, Sov. Phys. JETP-USSR 53, 421 (1981)
  • [8] A. B. Balakin, H. Dehnen, A.E. Zayats, Int. J. Mod. Phys. D 17, 1255 (2008) http://dx.doi.org/10.1142/S0218271808012802[Crossref]
  • [9] G. L. Gerakopoulos, S. Basilakos, G. Contopoulos, Phys. Rev. D 77, 043521 (2008)
  • [10] L. D. Fadeev, V. N. Popov, Phys. Lett. B 25, 29 (1967) http://dx.doi.org/10.1016/0370-2693(67)90067-6[Crossref]
  • [11] G. t’Hooft, Nucl. Phys. B 33, 173 (1971) http://dx.doi.org/10.1016/0550-3213(71)90395-6[Crossref]
  • [12] G. t’Hooft, Nucl. Phys. B 35, 167 (1971) http://dx.doi.org/10.1016/0550-3213(71)90139-8[Crossref]
  • [13] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integral (Mc. Graw-Hill, New York, 1965)
  • [14] B. de Witt, Phys. Rev. 160, 1113 (1967) http://dx.doi.org/10.1103/PhysRev.160.1113[Crossref]
  • [15] A. Babalean, R. Constantinescu, C. Ionescu, J. Phys. A-Math. Gen. 31, 8653 (1998) http://dx.doi.org/10.1088/0305-4470/31/43/008[Crossref]
  • [16] C. Ionescu, Mod. Phys. Lett. A 23, 737 (2008) http://dx.doi.org/10.1142/S0217732308026789[Crossref]
  • [17] T. S. Biro, S. G. Matinyan, B. Muller, Chaos and gauge field theory (World Scientific Lecture Notes in Physics, 1994) 56
  • [18] M. Vittot, J. Phys. A-Math. Gen. 37, 6337 (2004) http://dx.doi.org/10.1088/0305-4470/37/24/011[Crossref]
  • [19] R. Cimpoiasu, V. M. Cimpoiasu, R. Constantinescu, Romanian Journal of Physics 50 (2005) 317

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0041-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.