Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2010 | 8 | 1 | 150-156

Article title

Simulation model of the fractal patterns in ionic conducting polymer films


Title variants

Languages of publication



Normally polymer electrolyte membranes are prepared and studied for applications in electrochemical devices. In this work, polymer electrolyte membranes have been used as the media to culture fractals. In order to simulate the growth patterns and stages of the fractals, a model has been identified based on the Brownian motion theory. A computer coding has been developed for the model to simulate and visualize the fractal growth. This computer program has been successful in simulating the growth of the fractal and in calculating the fractal dimension of each of the simulated fractal patterns. The fractal dimensions of the simulated fractals are comparable with the values obtained in the original fractals observed in the polymer electrolyte membrane. This indicates that the model developed in the present work is within acceptable conformity with the original fractal.


  • Centre for Foundation Studies in Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • Centre for Foundation Studies in Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • Centre for Foundation Studies in Science, University of Malaya, 50603, Kuala Lumpur, Malaysia


  • [1] A. Chandra, S. Chandra, Phys. Rev. B 49, 633 (1994) http://dx.doi.org/10.1103/PhysRevB.49.633[Crossref]
  • [2] A. Chandra, Solid State Ionics 86-88, 1437 (1996) http://dx.doi.org/10.1016/0167-2738(96)00326-8[Crossref]
  • [3] M. Fujii, K. Arii, K. Yoshino, J. Phys.-Condens. Mat. 3, 7207 (1991) http://dx.doi.org/10.1088/0953-8984/3/37/013[Crossref]
  • [4] W. Janke, A. M. J. Schakel, Phys. Rev. Lett. 95, 135702 (2005) http://dx.doi.org/10.1103/PhysRevLett.95.135702[Crossref]
  • [5] F. Lo Verso, R. L. C. Vink, D. Pini, L. Reatto, Phys. Rev. E 73, 061407 (2006) http://dx.doi.org/10.1103/PhysRevE.73.061407[Crossref]
  • [6] B. Marcone, E. Orlandini, A. L. Stella, Phys. Rev. E 76, 051804 (2007) http://dx.doi.org/10.1103/PhysRevE.76.051804[Crossref]
  • [7] S. Rathgeber, M. Monkenbusch, J. L. Hedrick, M. Trollsås, A. P. Gast, J. Chem. Phys. 125, 204908 (2006) http://dx.doi.org/10.1063/1.2364895[Crossref]
  • [8] G. Zhang et al., J. Chem. Phys. 129, 224708 (2008) http://dx.doi.org/10.1063/1.3037229[Crossref]
  • [9] T. A. Witten, L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981) http://dx.doi.org/10.1103/PhysRevLett.47.1400[Crossref]
  • [10] S. A. Hashim Ali, N. S. Mohamed, A. A. Shariff, A. K. Arof, Solidstate Ionic Devices: Science & Technology, 16–19 (2000)
  • [11] M. Alfonseca, A. Ortega, IBM J. Res. Dev. 45, 797 (2001) http://dx.doi.org/10.1147/rd.456.0797[Crossref]
  • [12] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas (Basic Books, New York, 1980)
  • [13] T. Vicsek, Fractal Growth Phenomena, second edition (World Scientific Publishing, Singapore, 1992)
  • [14] M. N. Suki, N. S. Mohamed, S. A. Hashim Ali, R. Zainuddin, Malaysian Journal of Science, 23–33 (2007)

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.