PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2009 | 7 | 3 | 568-574
Article title

Chaoticity analysis of the current through pure, hydrogenated and hydrophobically modified PEG-Si thin films under varying relative humidity

Content
Title variants
Languages of publication
EN
Abstracts
EN
Polyethylene Glycol has an irregular current characteristic under constant voltage and slowly varying relative humidity. The current through a thin film of Gamma-isocyanatopropyltriethoxysilane added Polyethylene glycol (PEG-Si), its hydrogenated and hydrophobically modified forms, as a function of increasing relative humidity at equal time steps is analyzed for chaoticity. We suggest that the irregular behavior of current through PEG-Si thin films as a function of increasing relative humidity could best be analyzed for chaoticity using both time series analysis and detrended uctuation analysis; the relative humidity is kept as a slowly varying parameter. The presence of more then one regime is suggested by the calculation of the maximal Lyapunov exponents. Furthermore, the maximal Lyapunov exponent in each of the regimes was positive, thus confirming the presence of low dimensional chaos. DFA also confirms the presence of at least two different regimes, in agreement with the behavior of the maximal Lyapunov exponent in the time series analysis. We also suggest that the irregular behavior of the current through PEG-Si can be reduced by hydrogenating and hydrophobically modifying PEG-Si and the improvement in stability can be confirmed by our study.
Contributors
author
author
author
  • Department of Information Systems and Technologies, Yeditepe University, İstanbul, Turkey
  • Department of Physics, Boğgaziçi University, İstanbul, Turkey
References
  • [1] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, L. S. Tsimring, Rev. Mod. Phys., 65, 1331, (1993) http://dx.doi.org/10.1103/RevModPhys.65.1331[Crossref]
  • [2] O. Erdamar, Y. Skarlatos, G. Aktas, M. N. Inci, Appl. Phys. A, 83, 159, (2006) http://dx.doi.org/10.1007/s00339-005-3481-0[Crossref]
  • [3] R. Hegger, H. Kantz, T. Schreiber, Chaos, 94, 413, (1999) http://dx.doi.org/10.1063/1.166424[Crossref]
  • [4] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, L. S. Tsimring, Rev. Mod. Phys., 65, 1331, (1993) http://dx.doi.org/10.1103/RevModPhys.65.1331[Crossref]
  • [5] H. D. I. Abarbanel, Analysis of Observed Chaotic Data (Springer Verlag, New York, 1996) http://dx.doi.org/10.1007/978-1-4612-0763-4[Crossref]
  • [6] A. M. Fraser, H. L. Swinney, Phys. Rev. A, 33, 1134, (1986) http://dx.doi.org/10.1103/PhysRevA.33.1134[Crossref]
  • [7] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, United Kingdom, 1997)
  • [8] M. B. Kennel, R. Brown, H. D. I. Abarbanel, Phys. Rev. A, 45, 3403, (1992) http://dx.doi.org/10.1103/PhysRevA.45.3403[Crossref]
  • [9] A. Wolf, J. B. Swift, H. L. Swinney, J.A. Vastano, Physica D, 16, 285, (1985) http://dx.doi.org/10.1016/0167-2789(85)90011-9[Crossref]
  • [10] H. D. I. Abarbanel, R. Brown, M. B. Kennnel, J. Nonlinear Sci., 1, 175, (1991) http://dx.doi.org/10.1007/BF01209065[Crossref]
  • [11] M. Sano, Y. Sawada, Phys. Rev. Lett., 55, 1082, (1985) http://dx.doi.org/10.1103/PhysRevLett.55.1082[Crossref]
  • [12] J. P. Eckmann, S. O. Komphorst, D. Ruelle, S. Ciliberto, Phys. Rev. A, 34, 4971, (1986) http://dx.doi.org/10.1103/PhysRevA.34.4971[Crossref]
  • [13] A. Hacinliyan, Y. Skarlatos, G. Sahin, G. Akin, Chaos Soliton. Fract., 17, 575, (2003) http://dx.doi.org/10.1016/S0960-0779(02)00400-9[Crossref]
  • [14] H. Kantz, Phys. Lett. A, 185, 77, (1994) http://dx.doi.org/10.1016/0375-9601(94)90991-1[Crossref]
  • [15] A. Hacinliyan, Y. Skarlatos, H. A. Yildirim, G. Sahin, Phys. Rev. B, 73, 134302, (2006) http://dx.doi.org/10.1103/PhysRevB.73.134302[Crossref]
  • [16] C. K. Peng et al., Phys. Rev. E, 49, 1685, (1994) http://dx.doi.org/10.1103/PhysRevE.49.1685[Crossref]
  • [17] C. K. Peng, S. Havlin, H. E. Stanley, A. L. Goldberger, Chaos, 5, 82, (1995) http://dx.doi.org/10.1063/1.166141[Crossref]
  • [18] K. Hu, P. Ch. Ivanov, Z. Chen, P. Carpena, H. E. Stanley, Phys. Rev. E, 64, 011114, (2001) http://dx.doi.org/10.1103/PhysRevE.64.011114[Crossref]
  • [19] Z. Chen, P. Ch. Ivanov, K. Hu, H. E. Stanley, Phys. Rev. E, 65, 041107, (2002) http://dx.doi.org/10.1103/PhysRevE.65.041107[Crossref]
  • [20] J. Crank, G. S. Park (Eds.), Diffusion in Polymers (Academic Press, London, 1968)
  • [21] W. Chen, K. R. Shull, Macromolecules, 32, 136, (1999) http://dx.doi.org/10.1021/ma981331n[Crossref]
  • [22] D. A. Seanor, Electrical Properties of Polymers (Academic Press, New York 1982)
  • [23] S. K. Nayak, R. Ramasawamy, C. Chakravarty, Phys. Rev. E, 51, 3376, (1995) http://dx.doi.org/10.1103/PhysRevE.51.3376[Crossref]
  • [24] J. Barre, T. Dauxois, Europhys. Lett., 55, 164, (2001) http://dx.doi.org/10.1209/epl/i2001-00396-3[Crossref]
  • [25] H. Kitano et al., Langmuir, 17, 1889, (2000) http://dx.doi.org/10.1021/la0008986[Crossref]
  • [26] V. Adamec, J. H. Calderwood, J. Phys. D., 11, 781, (1978) http://dx.doi.org/10.1088/0022-3727/11/6/002[Crossref]
  • [27] M. Sozanski, J. Zebrowski, Acta Phys. Pol. B, 36, 1803, (2005)
  • [28] G. F. Zebende et al., Physica A, 342, 322, (2004) http://dx.doi.org/10.1016/j.physa.2004.01.071[Crossref]
  • [29] A. Hacinliyan, Y. Skarlatos, H. A. Yildirim, G. Sahin, Fractals, 14, 125, (2006) http://dx.doi.org/10.1142/S0218348X0600309X[Crossref]
  • [30] V. Giaretto, G. Ruscica, E. Miraldi, Mod. Phys. Lett. B, 8, 965, (1994) http://dx.doi.org/10.1142/S0217984994000972[Crossref]
  • [31] A. Hacinliyan, Y. Skarlatos, G. Sahin, K. Atak, O. O. Aybar, Eur. Phys. J. E (in press)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0034-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.