PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2009 | 7 | 3 | 490-502
Article title

Reconstruction of the finite size canonical ensemble from incomplete micro-canonical data

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we discuss how partial knowledge of the density of states for a model can be used to give good approximations of the energy distributions in a given temperature range. From these distributions one can then obtain the statistical moments corresponding to e.g. the internal energy and the specific heat. These questions have gained interest apropos of several recent methods for estimating the density of states of spin models. As a worked example we finally apply these methods to the 3-state Potts model for cubic lattices of linear order up to 128. We give estimates of e.g. latent heat and critical temperature, as well as the micro-canonical properties of interest.
Contributors
author
  • Department of theoretical physics, AlbaNova University Center, KTH, SE-106 91, Stockholm, Sweden, phl@kth.se
References
  • [1] W. Janke, Physica A 254, 164 (1998) http://dx.doi.org/10.1016/S0378-4371(98)00014-4[Crossref]
  • [2] J. Hove, Phys. Rev. E 70, 056707 (2004)
  • [3] F. Wang, D. P. Landau, Phys. Rev. Let. 86, 2050 (2001) http://dx.doi.org/10.1103/PhysRevLett.86.2050[Crossref]
  • [4] J.-S. Wang, R. H. Swendsen, J. Stat. Phys. 106, 245 (2002) http://dx.doi.org/10.1023/A:1013180330892[Crossref]
  • [5] R. Häggkvist et al., J. Stat. Phys. 114, 455 (2004) http://dx.doi.org/10.1023/B:JOSS.0000003116.17579.5d[Crossref]
  • [6] H. Touchette, E. Touchette, S. Richard, B. Turkington, Physica A 340, 138 (2004) http://dx.doi.org/10.1016/j.physa.2004.03.088[Crossref]
  • [7] Ch. Junghans, M. Bachmann, W. Janke, Phys. Rev. Lett. 97, 218103 (2006)
  • [8] A. M. Ferrenberg, D. P. Landau, R. H. Swendsen, Phys. Rev. E 5, 5092 (1995) http://dx.doi.org/10.1103/PhysRevE.51.5092[Crossref]
  • [9] C. McDiarmid, Algorithms and Combinatorics 16, 195 (1998) [Crossref]
  • [10] A. Martin-Löf, Commun. Math. Phys. 32, 75 (1973) http://dx.doi.org/10.1007/BF01646430[Crossref]
  • [11] R. S. Ellis, Classics in Mathematics: Entropy, large deviations, and statistical mechanics, Reprint of the 1985 original (Springer-Verlag, Berlin, 2006)
  • [12] B. Kaufman, Phys. Rev. 76, 1232 (1949) http://dx.doi.org/10.1103/PhysRev.76.1232[Crossref]
  • [13] R. Häggkvist et al., Phys. Rev. E 69, 046104 (2004)
  • [14] P. Beale, Phys. Rev. 76, 78 (1996)
  • [15] C. Borgs, Proceedings of FOCS’ 99 (1999), www.math.cmu.edu/%7Eaf1p/papers.html
  • [16] C. Borgs, R. Kotecký, I. Medved, J. Stat. Phys. 109, 67 (2002) http://dx.doi.org/10.1023/A:1019931410450[Crossref]
  • [17] W. Janke, R. Villanova, Nucl. Phys. B 489, 679 (1997) http://dx.doi.org/10.1016/S0550-3213(96)00710-9[Crossref]
  • [18] A. J. Guttmann, I. G. Enting, J. Phys. A 27, 5801 (1994) http://dx.doi.org/10.1088/0305-4470/27/17/014[Crossref]
  • [19] Roland Häggkvist et al., Adv. Phys. 56, 653 (2007) http://dx.doi.org/10.1080/00018730701577548[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0033-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.