Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 4 | 791-799

Article title

Analytical approximate solutions for two-dimensional viscous flow through expanding or contracting gaps with permeable walls

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions is solved analytically by using the homotopy analysis method (HAM). Graphical results are presented to investigate the influence of the nondimensional wall dilation rate α and permeation Reynolds number Re on the velocity, normal pressure distribution and wall shear stress. The obtained solutions, in comparison with the numerical solutions, demonstrate remarkable accuracy. The present problem for slowly expanding or contracting walls with weak permeability is a simple model for the transport of biological fluids through contracting or expanding vessels.

Contributors

  • Mechanical Engineering Department, Engineering Faculty of Bu-Ali Sina University, Hamedan, Iran
  • Mechanical Engineering Department, Engineering Faculty of Bu-Ali Sina University, Hamedan, Iran
  • Mechanical Engineering Department, Engineering Faculty of Bu-Ali Sina University, Hamedan, Iran

References

  • [1] A. H. Nayfeh, Introduction to perturbation techniques (Wiley, New York, 1979)
  • [2] R. H. Rand, D. Armbruster, Perturbation methods, bifurcation theory and computer algebraic (Springer-Verlag, New York, 1987)
  • [3] A. M. Lyapunov, General problem on stability of motion (English translation), (Taylor and Francis, London, 1992)
  • [4] A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, Methods of dynamics calculation and testing for thin-walled structures (Mashinostroyenie, Moscow, 1990)
  • [5] G. Adomian, Solving frontier problems of physics: the Decomposition method, (Kluwer Academic Publishers, Dordrecht, 1994)
  • [6] S. J. Liao, PhD Thesis, Shanghai Jiao Tong University (Shanghai, China 1992)
  • [7] S. J. Liao, J. Fluid Mech. 385, 101 (1999) http://dx.doi.org/10.1017/S0022112099004292[Crossref]
  • [8] S. J. Liao, Int. J. Nonlinear Mech. 34, 759 (1999) http://dx.doi.org/10.1016/S0020-7462(98)00056-0[Crossref]
  • [9] S. J. Liao, J. Fluid Mech. 488, 189 (2003) http://dx.doi.org/10.1017/S0022112003004865[Crossref]
  • [10] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton 2003)
  • [11] S. J. Liao, Appl. Math. Comput. 147, 499 (2004) http://dx.doi.org/10.1016/S0096-3003(02)00790-7[Crossref]
  • [12] S. J. Liao, Appl. Math. Comput. 169, 1186 (2005) http://dx.doi.org/10.1016/j.amc.2004.10.058[Crossref]
  • [13] M. Sajid, T. Hayat, S. Asghar, Nonlinear Dynam. 50, 27 (2007) http://dx.doi.org/10.1007/s11071-006-9140-y[Crossref]
  • [14] F. M. Allan, Appl. Math. Comput. 190, 6 (2007) http://dx.doi.org/10.1016/j.amc.2006.12.074[Crossref]
  • [15] S. Abbasbandy, Phys. Lett. A, 360, 109, (2006) http://dx.doi.org/10.1016/j.physleta.2006.07.065[Crossref]
  • [16] S. Abbasbandy, Chemical. Eng. J. (in press)
  • [17] F. M. Allan, Chaos Soliton. Fract. (in press)
  • [18] F. M. Allan, M. I. Syam, J. Comput. Appl. Math., 182, 362, (2005) http://dx.doi.org/10.1016/j.cam.2004.12.017[Crossref]
  • [19] T. Hayat, T. Javed, Phys. Lett. A, 370, 243, (2007) http://dx.doi.org/10.1016/j.physleta.2007.05.108[Crossref]
  • [20] M. Sajid, A. M. Siddiqui, T. Hayat, Int. J. Eng. Sci., 45, 381, (2007) http://dx.doi.org/10.1016/j.ijengsci.2007.04.010[Crossref]
  • [21] T. Hayat, M. Sajid, Int. J. Heat Mass Tran., 50, 75, (2007) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.06.045[Crossref]
  • [22] T. Hayat, Naveed Ahmed, M. Sajid, S. Asghar, Comput. Math. Appl., 54, 407, (2007) http://dx.doi.org/10.1016/j.camwa.2006.12.036[Crossref]
  • [23] T. Hayat, M. Sajid, M. Ayub, Communications in Nonlinear Science and Numerical Simulation, 12, 1481, (2007) http://dx.doi.org/10.1016/j.cnsns.2006.02.009[Crossref]
  • [24] Y. Bouremel, Communications in Nonlinear Science and Numerical Simulation, 12, 714, (2007) http://dx.doi.org/10.1016/j.cnsns.2005.07.001[Crossref]
  • [25] M. M. Rashidi, G. Domairry, S. Dinarvand, Communications in Nonlinear Science and Numerical Simulation, 14, 708, (2009) http://dx.doi.org/10.1016/j.cnsns.2007.09.015[Crossref]
  • [26] Z. Ziabakhsh, G. Domairry, Communications in Nonlinear Science and Numerical Simulation, 14, 1284, (2009) http://dx.doi.org/10.1016/j.cnsns.2007.12.011[Crossref]
  • [27] J. Cheng, S. J. Liao, R. N. Mohapatra, K. Vajravelu, J. Math. Anal. Appl., 343, 233, (2008) http://dx.doi.org/10.1016/j.jmaa.2008.01.050[Crossref]
  • [28] T. T. Zhang, L. Jia, Z. C. Wang, X. Li, Phys. Lett. A, 372, 3223, (2008) http://dx.doi.org/10.1016/j.physleta.2008.01.077[Crossref]
  • [29] H. N. Chang, J. S. Ha, J. K. Park, I. H. Kim, H. D. Shin, J. Biomech., 22, 1257, (1989) http://dx.doi.org/10.1016/0021-9290(89)90228-5[Crossref]
  • [30] J. Majdalani, C. Zhou, C. A. Dawson, J. Biomech., 35, 1399, (2002) http://dx.doi.org/10.1016/S0021-9290(02)00186-0[Crossref]
  • [31] E. C. Dauenhauer, J. Majdalani, AIAA J., 44, 99, (1999)
  • [32] J. Majdalani, C. Zhou, ZAMM-Z. Angew. Math. Me., 83, 181, (2003) http://dx.doi.org/10.1002/zamm.200310018[Crossref]
  • [33] Y. Z. Boutros, M. B. Abd-el-Malek, N. A. Badran, H. S. Hassan, J. Comput. Appl. Math. (in press)
  • [34] A. S. Berman, J. Appl. Phys., 24, 1232, (1953) http://dx.doi.org/10.1063/1.1721476[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0024-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.