Title variants
Languages of publication
Abstracts
Electromagnetic scattering from an infinite and a finite length PEMC circular cylinder, illuminated by an arbitrarily oriented dipole, is investigated theoretically. An electric dipole as a source of excitation is considered first, and then a magnetic dipole as a source of excitation is treated. In contrast to the case of an axially directed dipole, it is shown that no additional terms are needed to incorporate the cross-polarized component of the field for the case of radial and circumferential dipoles. Numerical verifications are presented to verify the validity of derived results and numerical code by comparing results with the published literature.
Discipline
- 41.20.Jb: Electromagnetic wave propagation; radiowave propagation(for light propagation, see 42.25.Bs; for electromagnetic waves in plasma, see 52.35.Hr; for atmospheric, ionospheric, and magnetospheric propagation, see 92.60.Ta, 94.20.Bb, and 94.30.Tz, respectively; see also 94.05.Pt Wave/wave, wave/particle interactions, in space plasma physics)
- 42.25.Fx: Diffraction and scattering
- 42.25.Gy: Edge and boundary effects; reflection and refraction
- 42.25.Ja: Polarization
Journal
Year
Volume
Issue
Pages
829-853
Physical description
Dates
published
1 - 12 - 2009
online
21 - 7 - 2009
Contributors
author
- Department of Electronics, Quaid-i-Azam University, 45320, Islamabad, Pakistan, ahsanilahi@gmail.com
author
- Department of Electronics, Quaid-i-Azam University, 45320, Islamabad, Pakistan, qaisar@qau.edu.pk
References
- [1] I. V. Lindell, A. H. Sihvola, J. Electromagnet. Wave. 19, 7 (2005)
- [2] I. V. Lindell, A. H. Sihvola, IEEE T. Antenn. Propag. 53, 9 (2005)
- [3] F. W. Hehl, Y. N. Obukhov, Phys. Lett. A. 334 (2005)
- [4] Y. N. Obukhov, F. W. Hehl, Phys. Lett. A. 341 (2005)
- [5] I. V. Lindell, A. H. Sihvola, IEEE T. Antenn. Propag. 54, 9 (2006)
- [6] I. V. Lindell, A. H. Sihvola, J. Electromagnet. Wave. 20, 7 (2006)
- [7] B. Jancewicz, J. Electromagnet. Wave. 20, 5 (2006)
- [8] R. Ruppin, J. Electromagnet. Wave. 20, 12 (2006)
- [9] R. Ruppin, J. Electromagnet. Wave. 20, 13 (2006) http://dx.doi.org/10.1163/156939306775777413[Crossref]
- [10] A. Hussain, Q. A. Naqvi, Prog. Electromagn. Res. 73 (2007)
- [11] A. Hussain, Q. A. Naqvi, M. Abbas, Prog. Electromagn. Res. 71 (2007)
- [12] S. Ahmed, Q. A. Naqvi, Prog. Electromagn. Res. 78 (2008)
- [13] M. Naveed, Q. A. Naqvi, Kohei Hongo, Prog. Electromagn. Res. M. 1 (2008)
- [14] M. A. Fiaz, A. Ghaffar, Q. A. Naqvi, J. Electromagnet. Wave. 20, 5 (2008)
- [15] S. Ahmed, Q. A. Naqvi, J. Electromagnet. Wave. 22 (2008)
- [16] A. Illahi, M. Afzaal, Q. A. Naqvi, Prog. Electromagn. Res. L. 4 (2008)
- [17] I. V. Lindell, A. H. Sihvola, Prog. Electromagn. Res. B. 5 (2008)
- [18] S. Ahmed, Q. A. Naqvi, Opt. Commun. 17, 281 (2008)
- [19] S. Ahmed, Q. A. Naqvi, Opt. Commun. 281, 23 (2008) http://dx.doi.org/10.1016/j.optcom.2007.09.010[Crossref]
- [20] M. A. Fiaz, A. Aziz, A. Ghaffar, Q. A. Naqvi, Prog. Electromagn. Res. 81 (2008)
- [21] M. Waqas, M. Faryad, and Q. A. Naqvi, J. Electromagnet. Wave. 22 (2008)
- [22] F. W. Hehl, Y. N. Obukhov, Foundations of Classical Electrodynamics (MA: Birkhäuser, Boston, 2003) 245
- [23] I. V. Lindell, Differential Forms in Electromagnetics (Wiley/IEEE Press, New York, 2004) http://dx.doi.org/10.1002/0471723096[Crossref]
- [24] A. Illahi, Q. A. Naqvi, Kohei Hongo, Prog. Electromagn. Res. M. 1 (2008)
- [25] C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers (McGraw-Hill Book Co. Inc., Singapore, 1987)
- [26] Hans H. Kuehl, IRE T. Antenn. Propag. AP-9 (1961)
- [27] C. A. Balanis, Advanced engineering electromagnetics (John & Wiley, New York, 1989)
- [28] J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Co. Inc., New York, 1941)
- [29] P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Co. Inc., New York, 1953)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0162-6