Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 1 | 84-88

Article title

Microstructure and thermal properties of quasi-equal rare earth substitution Y0.5Gd0.5Ba2Cu3O6.94 superconductor

Content

Title variants

Languages of publication

EN

Abstracts

EN
Sintering effects in YBa2Cu3Oz samples with quasi-equal rare earth substitution have been investigated. It has been shown that the Y-123 type compound can be formed when gadolinium is partially substituted (in this case 50% atomic substitution) for yttrium. The superconducting compound was obtained by the optimized ceramic method, including solid-state reaction, melting and sintering, controlled by X-ray diffraction. The microstructure was investigated by SEM and energy dispersive X-ray analyses. An AC susceptibility measurement has shown that T
c =93 K. Temperature-dependece of the thermal conductivity (4.5–300 K) of the polycrystalline Y0.5Gd0.5Ba2Cu3O6.94 sample was also measured.

Publisher

Journal

Year

Volume

7

Issue

1

Pages

84-88

Physical description

Dates

published
1 - 3 - 2009
online
8 - 1 - 2009

Contributors

  • Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria
  • Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria
  • Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 107, 1113, Sofia, Bulgaria
  • Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950, Wroclaw, Poland
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950, Wroclaw, Poland
author
  • Centre for Materials Research, Tallin Technical University, Ehitajate 5, Tallin, 19086, Estonia

References

  • [1] T. Venkatesan et al., Appl. Phys. Lett 56, 391 (2007) http://dx.doi.org/10.1063/1.103291[Crossref]
  • [2] H. Zhou et al., Physica C 152, 321 (1988) http://dx.doi.org/10.1016/0921-4534(88)90090-1[Crossref]
  • [3] A. Radhika Devl et al., Supercond. Sci. Tech. 13, 935 (2000) http://dx.doi.org/10.1088/0953-2048/13/7/305[Crossref]
  • [4] A.El. Ali et al., Physica B 321, 320 (2002) http://dx.doi.org/10.1016/S0921-4526(02)01037-2[Crossref]
  • [5] K. Ozturk, S. Celik, U. Cevik, E. Yanmaz, J. Alloy. Compd. 433, 46 (2007) http://dx.doi.org/10.1016/j.jallcom.2006.06.082[Crossref]
  • [6] L. Shlyk et al., Physica C 377, 437 (2002) http://dx.doi.org/10.1016/S0921-4534(01)01298-9[Crossref]
  • [7] N. Ogava, M. Yoshida, I. Hirabayashi, S. Tanaka, F. Maury, Supercond. Sci. Tech. 5, S89 (1992) http://dx.doi.org/10.1088/0953-2048/5/1S/015[Crossref]
  • [8] G.K. Balha et al., Cryogenics 35, 61 (1995) http://dx.doi.org/10.1016/0011-2275(95)90427-H[Crossref]
  • [9] Yong Feng et al., Physica C 297, 75 (1998) http://dx.doi.org/10.1016/S0921-4534(97)01847-9[Crossref]
  • [10] A. Jezowski, J. Mucha, G. Pompe, J Phys. 20, 1500 (1987)
  • [11] A. K. Stoyanova-Ivanova, et al., Cent. Eur. J. Chem. 4, 167 (2006) http://dx.doi.org/10.1007/s11532-005-0013-x[Crossref]
  • [12] A. K. Styanova-Ivanova, S. D. Terzieva, B. L. Shivachev, V. Mikli, L. K. Vladimirova, Cent. Eur. J. Phys. 6, 76 (2008) http://dx.doi.org/10.2478/s11534-007-0044-3[Crossref]
  • [13] A. Stoyanova-Ivanova et al., Journal of University of Chemical Technology and Metallurgy 41, 25 (2006)
  • [14] S. Terzieva et al., J. Optoelectron. Adv. Mat. 7, 477 (2005)
  • [15] A. K. Stoyanova-Ivanova, T. K. Nedelcheva, L. K. Vladimirova, Cent. Eur. J. Chem. 3, 432 (2005) http://dx.doi.org/10.2478/BF02479273[Crossref]
  • [16] A. Nishida, N. Fuketa, K. Furuya, K. Horai, Fukuoka Daigaku Rigaku Shuho 23, 155 (1993)
  • [17] J.L. Tallon, N.E. Flower, Physica C 204, 237 (1993) http://dx.doi.org/10.1016/0921-4534(93)91005-G[Crossref]
  • [18] J.J. Neumeier, H.A. Zimmermann, Phys. Rrev. B 47, 8385 (1993) http://dx.doi.org/10.1103/PhysRevB.47.8385[Crossref]
  • [19] C. Uher, Physica C 273, 314 (1997) http://dx.doi.org/10.1016/S0921-4534(96)00639-9[Crossref]
  • [20] A. Bernasconi et al., Physica C 153, 1034 (1988) http://dx.doi.org/10.1016/S0921-4534(88)80212-0[Crossref]
  • [21] F.G. Aliev, V.V. Moshchalkov, V.V. Prydun, Physica C 162, 572 (1989) http://dx.doi.org/10.1016/0921-4534(89)91161-1[Crossref]
  • [22] J.L. Cohn, S.D. Peacor, C. Uher, Phys. Rev. B 38, 2892 (1988) http://dx.doi.org/10.1103/PhysRevB.38.2892[Crossref]
  • [23] G.A. Shams, J.W. Cochrane, G.J. Russell, Physica C 351, 449 (2001) http://dx.doi.org/10.1016/S0921-4534(00)01644-0[Crossref]
  • [24] A. Jezowski et al., Helv. Phys. Acta. 61, 438 (1988)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0133-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.