Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 6 | 4 | 843-848

Article title

Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R=Sm, Dy) ceramics

Content

Title variants

Languages of publication

EN

Abstracts

EN
Polycrystalline samples of Ba4SrRTi3V7O30 (R=Sm and Dy), members of the tungsten-bronze family, were prepared using a high-temperature, solid-state reaction technique and studied their electrical properties (using complex impedance spectroscopy) in a wide range of temperature (31–500°C) and frequency (1 kHz-1 MHz). Preliminary structural (XRD) analyses of these compounds show the formation of single-phase, orthorhombic structures at room temperature. The scanning electron micrographs (SEM) provided information on the quality of the samples and uniform distribution of grains over the entire surface of the samples. Detailed studies of the dielectric properties suggest that they have undergone ferroelectric-paraelectric phase transition well above the room temperatures (i.e., 432 and 355°C for R= Sm and Dy, respectively, at frequency 100 kHz). Measurements of electrical conductivity (ac and dc) as a function of temperature suggest that the compounds have semiconducting properties much above the room temperature, with negative temperature coefficient of resistance (NTCR) behavior. The existence of ferroelectricity in these compounds was confirmed from a polarization study.

Contributors

  • Department of Physics, Betnoti College Betnoti, Mayurbhanj, Orissa, India
  • Department of Physics, D.N. College, Itanagar, Arunachal Pradesh, India
author
  • Department of Physics & Meteorology, IIT, Kharagpur, 721302, India
author
  • Department of Physics & Meteorology, IIT, Kharagpur, 721302, India

References

  • [1] R.I. Neurgaonkar, W.F. Hall, J.R. Oliver, W.W. Ho, W.K. Cory, Ferroelectrics 87, 167 (1998)
  • [2] R.R. Neurgaonkar, W.K. Cory, J. Opt. Soc. Am. 3, 276 (1986)
  • [3] R.R. Neurgaonkar, J.G. Nelson, J.R. Oliver, Mater. Res. Bull. 25, 959 (1990) http://dx.doi.org/10.1016/0025-5408(90)90002-J[Crossref]
  • [4] A. Panigrahi, N.K. Singh, J. Mater. Sci. Lett. 18, 1579 (1999) http://dx.doi.org/10.1023/A:1006656115028[Crossref]
  • [5] M.R. Raju, R.N.P. Choudhary, J. Phys. Chem. Solids 64, 847 (2003) http://dx.doi.org/10.1016/S0022-3697(02)00417-1[Crossref]
  • [6] R.P. Rao, S.K. Ghosh, P. Koshy, J. Mater. Sci. Mater. Electron. 12, 729 (2001) http://dx.doi.org/10.1023/A:1012944927315[Crossref]
  • [7] X.M. Chen, Y.H. Sun, X.H. Zheng, J. Eur. Ceram. Soc. 23, 1571 (2003) http://dx.doi.org/10.1016/S0955-2219(02)00372-2[Crossref]
  • [8] P. Koshy, L.P. Kumari, M.T. Sebastian, J. Mater. Sci., Mater. Electron. 9, 43 (1998) http://dx.doi.org/10.1023/A:1008880532375[Crossref]
  • [9] L. Fang, L. Chen, H. Zhang, C.L. Diao, R.Z. Yuan, Mater. Lett. 58, 2654 (2004) http://dx.doi.org/10.1016/j.matlet.2004.03.042[Crossref]
  • [10] H. Zhang, L. Fang, J.F. Yang, R.Z. Yuan, H.X. Liu, J. Mater. Sci. Mater. Electron. 15, 327 (2004) http://dx.doi.org/10.1023/B:JMSE.0000024235.65579.03[Crossref]
  • [11] L. Fang, H. Zhang, J.F. Yang, R.Z. Yuan, H.X. Liu, Mater. Res. Bull. 39, 677 (2004) http://dx.doi.org/10.1016/j.materresbull.2003.12.004[Crossref]
  • [12] H. Zhang, L. Fang, T.H. Huang, C.L. Diao, R.Z. Yuan, R. Dronskowski, J. Mater. Sci. Mater. Electron. 15, 695 (2004) http://dx.doi.org/10.1023/B:JMSE.0000038925.88816.0f[Crossref]
  • [13] L. Fang, H. Zhang, T.H. Huang, H.X. Liu, R.Z. Yuan, J. Mater. Sci. 39, 1903 (2004) http://dx.doi.org/10.1023/B:JMSC.0000016215.65531.69[Crossref]
  • [14] A. Panigrahi, N.K. Singh, J. Mater. Sci. Lett. 18, 1579 (1999) http://dx.doi.org/10.1023/A:1006656115028[Crossref]
  • [15] R.P. Rao, S.K. Ghosh, P. Koshy, J. Mater. Sci. Mater. Electron. 12, 729 (2001) http://dx.doi.org/10.1023/A:1012944927315[Crossref]
  • [16] S.R. Shannigrahi, R.N.P. Choudhary, A. Kumar, H.N. Acharya, J. Phys. Chem. Solids 59, 737 (1998) http://dx.doi.org/10.1016/S0022-3697(97)00217-5[Crossref]
  • [17] X.H. Zheng, X.M. Chen, J. Mater. Res: 17, 1664 (2002) http://dx.doi.org/10.1557/JMR.2002.0245[Crossref]
  • [18] L. Fang, H. Zhang, J.B. Yan, Chin. J. Inorg. Chem: 18, 1131 (2002)
  • [19] X.H. Zheng, X.M. Chen, Solid State Comm: 125, 449 (2003) http://dx.doi.org/10.1016/S0038-1098(02)00709-3[Crossref]
  • [20] B. Behera, P. Nayak, R.N.P. Choudhary, Mat. Lett. 59, 3489 (2005) http://dx.doi.org/10.1016/j.matlet.2005.06.019[Crossref]
  • [21] P.R. Das, R.N.P. Choudhary, B.K. Samantray, Mat. Chem. Phys. 101, 228 (2007) http://dx.doi.org/10.1016/j.matchemphys.2006.04.005[Crossref]
  • [22] J. Yeon, P. Shiv Halasyamani, I.V. Kityk, Materials Letters 62, 1082 (2008) http://dx.doi.org/10.1016/j.matlet.2007.07.048[Crossref]
  • [23] E. Wu, “POWD, an interactive powder diffraction data interpretation and indexing program, version 2.5,” School of PhysicalSciences, Finders University of South Australia, BedfordPark, Australia.
  • [24] P. Scherrer, Göttinger Nachrichten 2, 98 (1918)
  • [25] H. Zhang, L. Fang, T.H. Huang, H.X. Liu, R.Z. Yuan, J. Mat. Sci. 40, 529 (2005) http://dx.doi.org/10.1007/s10853-005-6121-3[Crossref]
  • [26] A. Bhanumati et al., Ferroelectrics 102, 173 (1990)
  • [27] G. Deng, G. Li, A. Ding, Q. Yin, Appl. Phys. Lett. 87, 192905 (2005) http://dx.doi.org/10.1063/1.2125110[Crossref]
  • [28] A. Molak, E. Talik, M. Kruczek, M. Paluch, A. Ratuszna, Z. Ujma, Mat. Sci. Eng. B 128, 16 (2006) http://dx.doi.org/10.1016/j.mseb.2005.11.011[Crossref]
  • [29] J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987)
  • [30] A.K. Jonscher, Nature 267, 673 (1977) http://dx.doi.org/10.1038/267673a0[Crossref]
  • [31] J. Plocharski, W. Wieczoreck, Solid State Ionics, 979, 28 (1988)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0112-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.