EN
In this paper, using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthén potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of t-waves scattering states are presented. The normalized wave functions expressed in terms of hypergeometric functions of scattering states on the “k/2π scale” and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solution is discussed.