Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 6 | 3 | 662-670

Article title

An action for a classical string, the equation of motion and group invariant classical solutions

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A string action which is essentially a Willmore functional is presented and studied. This action determines the physics of a surface in Euclidean three space which can be used to model classical string configurations. By varying this action an equation of motion for the mean curvature of the surface is obtained which is shown to govern certain classical string configurations. Several classes of classical solutions for this equation are discussed from the symmetry group point of view and an application is presented.

Contributors

author
  • Department of Mathematics, University of Texas, Edinburg, TX, 78539, USA

References

  • [1] B. Konopelchenko, I. Taimanov, J. Phys. A 29, 1261 (1986) http://dx.doi.org/10.1088/0305-4470/29/6/012[Crossref]
  • [2] D.G. Gross, C.N. Pope, S. Weinberg, Two-dimensional Quantum Gravity and Random Surfaces (World Scientific, Singapore, 1992)
  • [3] K.S. Viswanathan, R. Parthasarathy, Phys. Rev. D 55, 3800 (1997) http://dx.doi.org/10.1103/PhysRevD.55.3800[Crossref]
  • [4] P. Bracken, Phys. Lett. B 541, 166 (2002) http://dx.doi.org/10.1016/S0370-2693(02)02191-3[Crossref]
  • [5] A.M. Poyakov, Nucl. Phys. B 268, 406 (1986) http://dx.doi.org/10.1016/0550-3213(86)90162-8[Crossref]
  • [6] H. Kleinert, Phys. Lett. B 174, 335 (1986) http://dx.doi.org/10.1016/0370-2693(86)91111-1[Crossref]
  • [7] P. Bracken, A.M. Grundland, L. Martina, J. Math. Phys. 40, 3379 (1999) http://dx.doi.org/10.1063/1.532894[Crossref]
  • [8] S.N. Behera, A. Khare, Pramana 15, 245 (1980) http://dx.doi.org/10.1007/BF02847222[Crossref]
  • [9] R. Jackiw, Rev. Mod. Phys. 49, 681 (1977) http://dx.doi.org/10.1103/RevModPhys.49.681[Crossref]
  • [10] R.M. White, T.H. Geballe, Long Range Order in Solids (Academic, New York, 1979)
  • [11] B.G. Konopelchenko, Phys. Lett. B 459, 522 (1999) http://dx.doi.org/10.1016/S0370-2693(99)00699-1[Crossref]
  • [12] P.J. Olver, Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics, Springer, New York, 1993), vol 107
  • [13] E.L. Ince, Ordinary Differential Equations (Dover, New York, 1956)
  • [14] P. Winternitz, A.M. Grundland, J.A. Tuszynski, J. Phys. C 21, 4931 (1988) http://dx.doi.org/10.1088/0022-3719/21/28/008[Crossref]
  • [15] P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971)
  • [16] P. Bracken, Acta Appl. Math. 92, 63 (2006) http://dx.doi.org/10.1007/s10440-006-9059-9[Crossref]
  • [17] P. Bracken, A.M. Grundland, Czech. J. Phys. 51, 293 (2001) http://dx.doi.org/10.1023/A:1017529203946[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0092-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.