PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 3 | 759-764
Article title

Fractality feature in incompressible three-dimensional magnetohydrodynamic turbulence

Content
Title variants
Languages of publication
EN
Abstracts
EN
Direct Numerical Simulation (DNS) of decaying isotropic 3D magnetohydrodynamic (MHD) turbulence based on the 10243-modes in a periodic box is used to study the statistical properties of turbulence. In this paper, the presence of intermittency in MHD turbulence is investigated through the analysis of the Probability Distribution Function (PDF) for Elsässer fields and total energy fluctuations. We observe that the PDFs of the Elsässer fields fluctuations display a strong non-Gaussian behavior at small scale, which can be ascribed to multifractality feature, while the PDFs of the total energy fluctuations have the same shape over all observed scales and are monofractal. The PDFs have stretched exponential tail and satisfy the function P(|δX|) ∼ exp(−A|δX|μ). Numerically, we extract the exponent μ and find that it is constant for monofractal behavior as the length scale varies. To check the notion of self-similarity in the respective fluctuation, we apply the compensated structure functions.
Contributors
author
  • Faculty of Physics, Tabriz University, Tabriz, 51664, Iran
References
  • [1] U. Frisch Turbulence, (Cambridge University Press, Cambridge, 1995)
  • [2] A.N. Kolmogrov, J. Fluid. Mech. 13, 82 (1962) http://dx.doi.org/10.1017/S0022112062000518[Crossref]
  • [3] D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University Press, Cambridge, 1993)
  • [4] D. Biskamp, W.-C. Müller, Phys. Plasmas 7, 4889 (2000) http://dx.doi.org/10.1063/1.1322562[Crossref]
  • [5] V. Carbone, L. Sorriso-Valvo, E. Martines, V. Antoni, P. Veltri, Phys. Rev. E 62, R49 (2000) http://dx.doi.org/10.1103/PhysRevE.62.R49[Crossref]
  • [6] J.P. Goedbloed, S. Poedts, Principles of magnetohydrodynamics: With Application to Laboratory and Astrophysical Plasmas (Cambridge University Press, Combridge, 2004)
  • [7] M.K. Verma, Phys. Rep. 40, 229 (2004) http://dx.doi.org/10.1016/j.physrep.2004.07.007[Crossref]
  • [8] L.F. Burlaga, J. Geophys. Res. 96, 5847 (1991) http://dx.doi.org/10.1029/91JA00087[Crossref]
  • [9] E. Marsch, S. Liu, Ann. Geophys. 11, 227 (1993)
  • [10] L. Sorriso-Valvo, V. Carbone, P. Veltri, G. Consolini, R. Bruno, Geophys. Res. Lett. 26, 1801 (1999) http://dx.doi.org/10.1029/1999GL900270[Crossref]
  • [11] R. Bruno, V. Carbone, B. Bavassano, L. Sorriso-Valvo, Advances in Space Research 35, 939 (2005) http://dx.doi.org/10.1016/j.asr.2005.01.106[WoS][Crossref]
  • [12] H. Politano, A. Pouquet, Geophys. Res. Lett. 25, 273 (1998) http://dx.doi.org/10.1029/97GL03642[Crossref]
  • [13] W.C. Müller, D. Biskamp, R. Grappin, Phys. Rev. E 67, 066302-1 (2003)
  • [14] W.C. Müller, D. Biskamp, Phys. Rev. Lett. 84, 475 (2000) http://dx.doi.org/10.1103/PhysRevLett.84.475[Crossref]
  • [15] W.C. Müller, R. Grappin, Phys. Rev. Lett. 95, 114502 (2005) http://dx.doi.org/10.1103/PhysRevLett.95.114502[Crossref]
  • [16] B. Hnat, S.C. Chapman, G. Rowlands, Phys. Plasmas 11, 1326 (2004) http://dx.doi.org/10.1063/1.1667500[Crossref]
  • [17] B. Hnat, S.C. Chapman, G. Rowlands, Phys. Rev. E 67, 056404-1 (2003)
  • [18] H. Politano, A. Pouquet, P.L. Sulem, Physics of fluid B 12, 2330 (1989) http://dx.doi.org/10.1063/1.859051[Crossref]
  • [19] R. Grappin, A. Pouquet, J. Leórat, Astron. Astrophys. 126, 51 (1983)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0086-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.