Title variants
Languages of publication
Abstracts
Ashcroft’s empty core (EMC) model potential is used to study the superconducting state parameters (SSPs) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T
C, isotope effect exponent αand effective interaction strength N
O
V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S’) and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T
C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence ‘Z’ is identified.
C, isotope effect exponent αand effective interaction strength N
O
V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S’) and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T
C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence ‘Z’ is identified.
Discipline
- 61.43.Dq: Amorphous semiconductors, metals, and alloys
- 71.15.Dx: Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction)
- 74.20.-z: Theories and models of superconducting state
- 74.70.Ad: Metals; alloys and binary compounds (including A15, MgB2, etc.)
Journal
Year
Volume
Issue
Pages
238-252
Physical description
Dates
published
1 - 6 - 2008
online
26 - 3 - 2008
Contributors
author
References
- [1] A.V. Narlikar, S.N. Ekbote, Superconductivity and Superconducting Materials (South Asian Publishers, New Delhi, 1983)
- [2] P.N. Gajjar, A.M. Vora, A.R. Jani, Indian J. Phys. 78, 775 (2004)
- [3] A.M. Vora, M.H. Patel, P.N. Gajjar, A.R. Jani, Pramana-J. Phys. 58, 849 (2002) http://dx.doi.org/10.1007/s12043-002-0181-6[Crossref]
- [4] P.N. Gajjar, A.M. Vora, M.H. Patel, A.R. Jani, Int. J. Mod. Phys. B 17, 6001 (2003) http://dx.doi.org/10.1142/S0217979203023598[Crossref]
- [5] A.M. Vora, Physica C 450, 135 (2006) http://dx.doi.org/10.1016/j.physc.2006.09.008[Crossref]
- [6] A.M. Vora, Physica C 458, 21 (2007) http://dx.doi.org/10.1016/j.physc.2007.03.002[Crossref]
- [7] A.M. Vora, Physica C 458, 43 (2007) http://dx.doi.org/10.1016/j.physc.2007.03.397[Crossref]
- [8] A.M. Vora, Supercond. Sci. Tech. 20, 542 (2007) http://dx.doi.org/10.1088/0953-2048/20/6/009[Crossref]
- [9] A.M. Vora, Phys. Scr. 76, 204 (2007) http://dx.doi.org/10.1088/0031-8949/76/2/013[Crossref]
- [10] A.M. Vora, J. Supercond. Novel Magn. 20, 355 (2007) http://dx.doi.org/10.1007/s10948-007-0230-y[Crossref]
- [11] A.M. Vora, J. Supercond. Novel Magn. 20, 373 (2007) http://dx.doi.org/10.1007/s10948-007-0232-9[Crossref]
- [12] A.M. Vora, J. Supercond. Novel Magn. 20, 387 (2007) http://dx.doi.org/10.1007/s10948-007-0234-7[Crossref]
- [13] A.M. Vora, J. Optoelec. Adv. Mater. 9, 2498 (2007)
- [14] A.M. Vora, Comp. Mater. Sci. 40, 492 (2007) http://dx.doi.org/10.1016/j.commatsci.2007.02.007[Crossref]
- [15] A.M. Vora, Chinese Phys. Lett. 24, 2624 (2007) http://dx.doi.org/10.1088/0256-307X/24/9/045[Crossref]
- [16] A.M. Vora, M.H. Patel, S.R. Mishra, P.N. Gajjar, A.R. Jani, Solid State Phys. 44, 345 (2001)
- [17] P.N. Gajjar, A.M. Vora, A.R. Jani, Mod. Phys. Lett. B 18, 573 (2004) http://dx.doi.org/10.1142/S0217984904007104[Crossref]
- [18] S. Sharma, K.S. Sharma, H. Khan, Czech. J. Phys. 55, 1005 (2005) http://dx.doi.org/10.1007/s10582-005-0099-6[Crossref]
- [19] S. Sharma, K.S. Sharma, H. Khan, Supercond. Sci. Technol. 17, 474 (2004) http://dx.doi.org/10.1088/0953-2048/17/3/029[Crossref]
- [20] S. Sharma, H. Khan, K. S. Sharma, Phys. Status Solidi B 241, 2562 (2004) http://dx.doi.org/10.1002/pssb.200402039[Crossref]
- [21] S. Sharma, H. Khan, Solid State Phys. 46, 635 (2003)
- [22] S. Sharma, H. Khan, K.S. Sharma, Ind. J. Pure Appl. Phys. 41, 301 (2003)
- [23] M. Gupta, P.C. Agarwal, K.S. Sharma, L. Dass, Phys. Status Solidi B 211, 731 (1999) http://dx.doi.org/10.1002/(SICI)1521-3951(199902)211:2<731::AID-PSSB731>3.0.CO;2-Y[Crossref]
- [24] K.S. Sharma, R. Sharma, M. Gupta, P.C. Agarwal, L. Dass, In: M.P. Saksena et al. (Eds.), The Physics of Disordered Materials (NISCOM, New Delhi, 1997) 95
- [25] P. C. Agarwal, M. Gupta, K. S. Sharma, L. Dass, In: M.P. Saksena et al. (Eds.), The Physics of Disordered Materials (NISCOM, New Delhi, 1997) 102
- [26] M. Gupta, K.S. Sharma, L. Dass, Pramana-J. Phys. 48, 923 (1997) http://dx.doi.org/10.1007/BF02845595[Crossref]
- [27] R. Sharma, K.S. Sharma, Supercond. Sci. Technol. 10, 557 (1997) http://dx.doi.org/10.1088/0953-2048/10/8/005[Crossref]
- [28] N.W. Ashcroft, Phys. Lett. 23, 48 (1966) http://dx.doi.org/10.1016/0031-9163(66)90251-4[Crossref]
- [29] K.S. Sharma, C.M. Kachhava, Solid State Commun. 30, 749 (1979) http://dx.doi.org/10.1016/0038-1098(79)91174-8[Crossref]
- [30] V. Veljkovic, I. Slavic, Phys. Rev. Lett. 29, 105 (1972) http://dx.doi.org/10.1103/PhysRevLett.29.105[Crossref]
- [31] W.A. Harrison, Pseudopotentials in the Theory of Metals (W.A. Benjamin, Inc., New York, 1966)
- [32] R. Taylor, J. Phys. F: Met. Phys. 8, 1699 (1978) http://dx.doi.org/10.1088/0305-4608/8/8/011[Crossref]
- [33] S. Ichimaru, K. Utsumi, Phys. Rev. B 24, 3220 (1981) http://dx.doi.org/10.1103/PhysRevB.24.7385[Crossref]
- [34] B. Farid, V. Heine, G.E. Engel, I.J. Robertson, Phys. Rev. B 48, 11602 (1993)
- [35] A. Sarkar, D.S. Sen, S. Haldar, D. Roy, Mod. Phys. Lett. B 12, 639 (1998) http://dx.doi.org/10.1142/S0217984998000755[Crossref]
- [36] W.H. Butler, Phys. Rev. B 15, 5267 (1977) http://dx.doi.org/10.1103/PhysRevB.15.5267[Crossref]
- [37] U. Mizutani, Prog. Mater. Sci. 28, 97 (1983) http://dx.doi.org/10.1016/0079-6425(83)90001-4[Crossref]
- [38] W.L. McMillan, Phys. Rev. 167, 331 (1968) http://dx.doi.org/10.1103/PhysRev.167.331[Crossref]
- [39] R. Hasegawa, Glassy Metals: Magnetic, Chemical and Structural Properties (CRC Press, Florida, 1980)
- [40] B.T. Matthias, In: C.J. Gorter (Ed.), Progress in Low Temperature Physics 2 (North Holland, Amsterdam, 1957)
- [41] B.T. Matthias, Physica 69, 54 (1973) http://dx.doi.org/10.1016/0031-8914(73)90199-7[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0059-4