Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 6 | 2 | 363-371

Article title

The uncertainty relation expressed by means of a new entropic function

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this article we use a new entropic function, derived from an f-divergence between two probability distributions, for the construction of an alternative entropic uncertainty relation. After a brief review of some existing f-divergences, a new f-divergence and the corresponding entropic function, derived from it, is introduced and its useful characteristics are presented. This entropic function is then applied to construct an alternative uncertainty relation of two non-commuting observables in quantum physics. An explicit expression for such an uncertainty relation is found for the case of two observables which are the x- and z-components of the angular momentum of the spin-1/2 system.

Contributors

  • Institute of Mathematics, Slovak Academy of Sciences, SK-814 73, Bratislava, Štefánikova 49, Slovak Republic

References

  • [1] V. Majerník, E. Majerníková, S. Shpyrko, Cent. Eur. J. Phys. 3, 393 (2003) http://dx.doi.org/10.2478/BF02475852[Crossref]
  • [2] I. Vajda, Theory of Statistical Inference and Information (Kluwer Academic Publishers, Dortrecht, 1996)
  • [3] I. Csiszár, Publ. Math. Inst. Hungar. Acad. Sci. 8, 85 (1963)
  • [4] S. Kullback, R.A. Leibler, Annals Mathematical Statistics 22, 79 (1951) http://dx.doi.org/10.1214/aoms/1177729694[Crossref]
  • [5] Z. Daróczy, MTA III. Osztály Közleménzyei, 19, 11 (1969) (in Hungarian)
  • [6] J. Aczcél, Z. Daróczy, On measures of information and their characterizations (New York, Academic Press, 1972)
  • [7] F. Österreicher, Ciszár’s f-divergences-Basic Properties, Preprint of Institute of Mathematics of University of Saltzburg (2002)
  • [8] A. Rényi, On the Measures of Entropy and Information, In: 4th Berkeley Symp. Math. Stat. Probability 1, 541 (1961)
  • [9] A. Bhattacharyya, Sankhya 8, 1 (1946)
  • [10] H. Chernoff, An. Math. Stat. 30, 493 (1952) http://dx.doi.org/10.1214/aoms/1177729330[Crossref]
  • [11] W. Finkel, Phys. Rev. A 35, 1488 (1987) http://dx.doi.org/10.1103/PhysRevA.35.1486[Crossref]
  • [12] V. Majerník, L. Richterek, Eur. J. Phys. 18, 73 (1997) http://dx.doi.org/10.1088/0143-0807/18/2/005[Crossref]
  • [13] B. Mamojka, Int. J. Theor. Phys. 11, 73 (1974) http://dx.doi.org/10.1007/BF01811035[Crossref]
  • [14] M. Portesi, A. Plastino, Physica A 225, 411 (1996) http://dx.doi.org/10.1016/0378-4371(95)00475-0[Crossref]
  • [15] V. Majerník, Int. J. Gen. Syst. 33, 673 (2004) http://dx.doi.org/10.1080/03081070410001723139[Crossref]
  • [16] J. Havrda, F. Charvat, Kybernetika 3, 30 (1967)
  • [17] D. Morales, L. Padro, I. Vajda, IEEE Trans. on Syst., Man, and Cyber, Part A: Systems and Humans 26, 681 (2006) http://dx.doi.org/10.1109/3468.541329[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0057-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.