PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 3 | 440-444
Article title

The dissociated properties of dislocation in two-dimensional triangular lattice

Content
Title variants
Languages of publication
EN
Abstracts
EN
The dissociated core structure of dislocation in two-dimensional triangular lattice is determined by the variational method within lattice theory. The dissociation effect leads to a narrower core width of partial dislocations than the compact one. The equilibrium separation between two partial dislocations is not very sensitive to the intrinsic stacking fault energy and there exists deviation from the intrinsic stacking fault energy criterion in the continuous elastic theory of dislocation. The relationship between the equilibrium separation and intrinsic stacking fault energy is analogous in lattice theory and the Peierls-Nabarro model. But the equilibrium separation obtained in lattice theory is wider than that obtained in the Peierls-Nabarro model for the same intrinsic stacking fault energy.
Publisher
Journal
Year
Volume
6
Issue
3
Pages
440-444
Physical description
Dates
published
1 - 9 - 2008
online
17 - 7 - 2008
References
  • [1] J.P. Hirth, J. Lothe, Theory of dislocations, 2nd Ed. (Wiley, New York 1982)
  • [2] G. Schoeck, Mater. Sci. Eng. A 400–401, 7 (2005)
  • [3] F.R.N. Nabarro, Mater. Sci. Eng. A 234, 67 (1997) http://dx.doi.org/10.1016/S0921-5093(97)00184-6[Crossref]
  • [4] H. Hakkinen, S. Makinen, M. Manninen, Phys. Rev. B 41, 12441 (1990) http://dx.doi.org/10.1103/PhysRevB.41.12441[Crossref]
  • [5] Q.F. Fang, R. Wang, Phys. Rev. B 62, 9317 (2000) http://dx.doi.org/10.1103/PhysRevB.62.9317[Crossref]
  • [6] A. Aslanides, V. Pontikis, Comp. Mater. Sci. 10, 401 (1998) http://dx.doi.org/10.1016/S0927-0256(97)00109-2[Crossref]
  • [7] S.G. Srinivasan et al., Phys. Rev. Letts. 94, 125502 (2005) http://dx.doi.org/10.1103/PhysRevLett.94.125502[Crossref]
  • [8] J. Hartford et al., Phys. Rev. B 58, 2487 (1998) http://dx.doi.org/10.1103/PhysRevB.58.2487[Crossref]
  • [9] B. Sydow, J. Hartford, G. Wahnstrom, Comp. Mater. Sci. 15, 367 (1999) http://dx.doi.org/10.1016/S0927-0256(99)00025-7[Crossref]
  • [10] G. Schoeck, Phil. Mag. A 79, 1207 (1999)
  • [11] G. Schoeck, Acta Mater. 54, 4865 (2006) http://dx.doi.org/10.1016/j.actamat.2006.06.023[Crossref]
  • [12] S. Kibey et al., Acta Mater. 54, 2991 (2006) http://dx.doi.org/10.1016/j.actamat.2006.02.048[Crossref]
  • [13] S.F. Wang, Phys. Rev. B 65, 094111 (2002) http://dx.doi.org/10.1103/PhysRevB.65.094111[Crossref]
  • [14] S.F. Wang, Chin. Phys. Letts. 24, 143 (2007) http://dx.doi.org/10.1088/0256-307X/24/1/039[Crossref]
  • [15] L. Lejček, Czech. J. Phys. B 26, 294 (1976) http://dx.doi.org/10.1007/BF01594267[Crossref]
  • [16] N.I. Medveda, Y.N. Gornostyrev, A.J. Freeman, Phys. Rev. B 58, 11927 (1998) http://dx.doi.org/10.1103/PhysRevB.58.11927[Crossref]
  • [17] S.F. Wang, X.Z. Wu, Y.F. Wang, Phys. Scr. 76, 593 (2007) http://dx.doi.org/10.1088/0031-8949/76/2/004[Crossref]
  • [18] S. Takeuchi, K. Edagawa, Mater. Sci. Eng. A 234, 1004 (1997) http://dx.doi.org/10.1016/S0921-5093(97)00397-3[Crossref]
  • [19] X.Z. Wu, S.F. Wang, Acta. Mech. Sol. Sin. 20, 363 (2007)
  • [20] S. Takeuchi, Mater. Sci. Eng. A 234, 84 (2005)
  • [21] G. Lu et al., Phys. Rev. B 62, 3099 (2000) http://dx.doi.org/10.1103/PhysRevB.62.3099[Crossref]
  • [22] P. Szelestey, M. Patriarca, K. Kaski, Model. Simul. Mater. Sci. Eng. 11, 883 (2003) http://dx.doi.org/10.1088/0965-0393/11/6/006[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0053-x
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.