Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 6 | 3 | 462-468

Article title

Double-Alekseev inverse scattering method in the stationary axi-symmetric vacuum gravitation field equations

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present a new improvement to the Alekseev inverse scattering method. This improved inverse scattering method is extended to a double form, followed by the generation of some new solutions of the double-complex Kinnersley equations. As the double-complex function method contains the Kramer-Neugebauer substitution and analytic continuation, a pair of real gravitation soliton solutions of the Einstein’s field equations can be obtained from a double N-soliton solution. In the case of the flat Minkowski space background solution, the general formulas of the new solutions are presented.

Publisher

Journal

Year

Volume

6

Issue

3

Pages

462-468

Physical description

Dates

published
1 - 9 - 2008
online
17 - 7 - 2008

Contributors

author
  • School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116023, China
author
  • School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116023, China
author
  • Department of Physics, Bohai University, Jinzhou, 121003, China

References

  • [1] F.J. Ernst, Phys. Rev. 167, 1175 (1968) http://dx.doi.org/10.1103/PhysRev.167.1175[Crossref]
  • [2] V.A. Belinski, V.E. Zakharov, Sov. Phys. JETP 48, 985 (1978)
  • [3] V.A. Belinski, V.E. Zakharov Sov. Phys. JETP 50, 1 (1979)
  • [4] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations, Inverse Scattering (Cambridge Univ. Press, 1991)
  • [5] G.A. Alekseev, Pis’ma JETP 32, 301 (1980)
  • [6] G.A. Alekseev, Sov. Phys. Dokl. (USA) 26, (1981)
  • [7] G.A. Alekseev, Sov. Phys. Dokl. (USA) 28, (1983)
  • [8] G.A. Alekseev, Proceedings of the Steklov Inst. of Math. 3, 215 (1988)
  • [9] W. Kinnersley, J. Math. Phys. 18, 1529 (1977) http://dx.doi.org/10.1063/1.523458[Crossref]
  • [10] W. Kinnersley, J. Math. Phys. 18, 1538 (1977) http://dx.doi.org/10.1063/1.523459[Crossref]
  • [11] G. Neugebauer, J. Phys. A 12, 67 (1979) http://dx.doi.org/10.1088/0305-4470/12/4/001[Crossref]
  • [12] G. Neugebauer, J. Phys. A 13, 19 (1980) http://dx.doi.org/10.1088/0305-4470/13/2/003[Crossref]
  • [13] B.K. Harrison, Phys. Rev. Lett. 41, 1197 (1978) http://dx.doi.org/10.1103/PhysRevLett.41.1197[Crossref]
  • [14] B.K. Harrison, J. Math. Phys. 24, 2178 (1983) http://dx.doi.org/10.1063/1.525928[Crossref]
  • [15] Z. Zai-Zhe, J. Math. Phys. 26, 2589 (1985) http://dx.doi.org/10.1063/1.526972[Crossref]
  • [16] M. Yaglom, Complex Numbers in Geometry (Academic, London, 1968)
  • [17] G. Ya-Jun, Zhong Zai-Zhe, Gui Yuan-Xing, J. Math. Phys. 38, 3155 (1997) http://dx.doi.org/10.1063/1.532016[Crossref]
  • [18] G. Ya-Jun, Int. J. Theor. Phys. 36, 1843 (1997) http://dx.doi.org/10.1007/BF02435847[Crossref]
  • [19] G. Ya-Jun, Gui Yuan-Xing, Gen. Relat. Gravit. 33, 111 (2001) http://dx.doi.org/10.1023/A:1002001104462[Crossref]
  • [20] G. Ya-Jun, Z. Zai-Zhe, J. Math. Phys. 33, 278 (1992) http://dx.doi.org/10.1063/1.529962[Crossref]
  • [21] G. Ya-Jun, Z. Zai-Zhe, Int. J. Theor. Phys. 35, 277 (1996) http://dx.doi.org/10.1007/BF02083815[Crossref]
  • [22] Z. Zai-Zhe, Scientia Sinica A 31, 436 (1988)
  • [23] G. Neugebauer, D. Kramer, Ann. Phys. 24, 62 (1969) http://dx.doi.org/10.1002/andp.19694790108[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0049-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.