PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 2 | 356-362
Article title

Arbitrary /-state approximate solutions of the Hulthén potential through the exact quantization rule

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, using the Exact Quantization Rule, we present approximate analytical solutions of the radial Schrödinger equation with non-zero l values for the Hulthén potential in the frame of an approximation to the centrifugal potential for any l states. The energy levels of all bound states can be easily calculated from the Exact Quantization Rule. Specifically, the normalized analytical wave functions are also obtained. Some energy eigenvalues are numerically calculated and compared with those obtained by other methods such as asymptotic iteration, supersymmetry, numerical integration methods, and the schroedinger Mathematica package.
Publisher

Journal
Year
Volume
6
Issue
2
Pages
356-362
Physical description
Dates
published
1 - 6 - 2008
online
26 - 3 - 2008
Contributors
  • Faculty of Science, Xi’an University of Architecture and Technology, Xi’an, 710055, China, qwcqj@pub.xaonline.com
author
  • Xi’an Microelectronics Technology Institute, Xi’an, 710054, China
author
  • The Fourth Military Medical University, Xi’an, 710038, China
References
  • [1] F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995) http://dx.doi.org/10.1016/0370-1573(94)00080-M[Crossref]
  • [2] A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basle, 1988)
  • [3] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 36, 11807 (2003)
  • [4] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 38, 1147 (2005) http://dx.doi.org/10.1088/0305-4470/38/5/015[Crossref]
  • [5] Z.Q. Ma, B.W. Xu, Europhys. Lett. 69, 685 (2005) http://dx.doi.org/10.1209/epl/i2004-10418-8[Crossref]
  • [6] Z.Q. Ma, B.W. Xu, A. P. S 55, 1571 (2006) (in Chinese)
  • [7] W.C. Qiang, S.H. Dong, Phys. Lett. A 363, 169 (2007) http://dx.doi.org/10.1016/j.physleta.2006.10.091[Crossref]
  • [8] Wen-Chao Qiang, Run-Suo Zhou, Yang Gao, J. Phys. A 40, 1677 (2007) http://dx.doi.org/10.1088/1751-8113/40/7/016[Crossref]
  • [9] O. Bayrak, I. Boztosun, J. Phys. A 39, 6955 (2006) http://dx.doi.org/10.1088/0305-4470/39/22/010[Crossref]
  • [10] O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A 39, 11521 (2006)
  • [11] O. Bayrak, I. Boztosun, Physica Scripta 76, 92 (2007) http://dx.doi.org/10.1088/0031-8949/76/1/016[Crossref]
  • [12] O. Bayrak, I. Boztosun, J. Mol. Struct. 802, 17 (2007)
  • [13] O. Bayrak, I. Boztosun, J. Phys. A 40, 11119 (2007)
  • [14] L. Hulthén, Ark. Mat. Astron. Fys. A 28, 5 (1942)
  • [15] Y.P. Varshni, Phys. Rev. A 41, 4682 (1990) http://dx.doi.org/10.1103/PhysRevA.41.4682[Crossref]
  • [16] B. Gonul, O. Ozer, Y. Cancelik, M. Kocak, Phys. Lett. A 275, 238 (2000) http://dx.doi.org/10.1016/S0375-9601(00)00590-9[Crossref]
  • [17] W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999) http://dx.doi.org/10.1142/S0129183199000450[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0041-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.