Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2008 | 6 | 2 | 344-350

Article title

Exact and approximate statistical approaches for the exergy of blackbody radiation



Title variants

Languages of publication



There is a long term debate in literature about the exergy of blackbody radiation (BBR). Most authors contributing to this dispute used classical thermodynamics arguments. The objective of this paper is to propose a statistical thermodynamics approach. This gives new perspectives to previous results. Four simple statistical microscopic models are used to derive BBR exergy. They consist of combinations of quantum and classical descriptions of the state occupation number and entropy, respectively. In all four cases the BBR exergy (or exergy flux density) is given by the internal energy (or energy flux density) times an efficiency-like factor containing the environment temperature and the blackbody radiation temperature. One shows that Petela-Landsberg-Press efficiency is the “exact” result while the Jeter (Carnot) efficiency corresponds to the classical approximation. Other two (new) approximate efficiency-like factors are also reported.


  • Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei 313, Bucharest, 060042, Romania


  • [1] R. Petela, J. Heat Transfer 86, 187 (1964)
  • [2] D.C. Spanner, Introduction to thermodynamics (Academic Press, London, 1964) 218
  • [3] P.T. Landsberg, J.R. Mallinson, Thermodynamic constraints, effective temperatures and solar cells, In: Coll. Int. sur l’Electricite Solaire (Toulouse, CNES, 1976) 27
  • [4] W.H. Press, Nature 264, 734 (1976) http://dx.doi.org/10.1038/264734a0[Crossref]
  • [5] S.J. Jeter, Solar Energy 26, 231 (1981) http://dx.doi.org/10.1016/0038-092X(81)90207-3[Crossref]
  • [6] A. Bejan, J. Sol. Energy Engng. 109, 46 (1987) http://dx.doi.org/10.1115/1.3268177[Crossref]
  • [7] A. Bejan, Advanced engineering thermodynamics (Wiley, New York, 1988)
  • [8] R. Petela, Solar Energy 74, 469 (2003) http://dx.doi.org/10.1016/S0038-092X(03)00226-3[Crossref]
  • [9] S. Sieniutycz, P. Kuran, Int. J. Heat Mass Transfer 49, 3264 (2006) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.01.036[Crossref]
  • [10] J. Szargut et al., Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, (Hemispere Publ. Co., Newe York and Springer-Verlag, Berlin, 1988)
  • [11] L. Landau, E. Lifchitz, Physique Statistique (MIR, Moscou, 1967)
  • [12] P.T. Landsberg, Thermodynamics and Statistical Mechanics (Dover, New York, 1990)
  • [13] P.T. Landsberg, V. Badescu, In: S. Sieniutycz, A. De Vos (Eds.), Thermodynamics of energy conversion and transport (Springer, New York, 2000)
  • [14] S. Karlsson, Phys. Scripta 26, 329 (1982) http://dx.doi.org/10.1088/0031-8949/26/4/009[Crossref]
  • [15] R. Petela, The problem of derivation of formula for heat radiation exergy, Zesz. Nauk. Pol. Sl., Energetyka 50, 105 (1974) (in Polish)

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.