Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2008 | 6 | 2 | 327-331

Article title

Impact of the lasr wavelength and fluence on the ablation rate of aluminium


Title variants

Languages of publication



The dependence of the ablation rate of aluminium on the fluence of nanosecond laser pulses with wavelengths of 532 nm and respectively 1064 nm is investigated in atmospheric air. The fluence of the pulses is varied by changing the diameter of the irradiated area at the target surface, and the wavelength is varied by using the fundamental and the second harmonic of a Q-switched Nd-YAG laser system. The results indicate an approximately logarithmic increase of the ablation rate with the fluence for ablation rates smaller than ∼6 μm/pulse at 532 nm, and 0.3 μm/pulse at 1064 nm wavelength. The significantly smaller ablation rate at 1064 nm is due to the small optical absorptivity, the strong oxidation of the aluminium target, and to the strong attenuation of the pulses into the plasma plume at this wavelength. A jump of the ablation rate is observed at the fluence threshold value, which is ∼50 J/cm2 for the second harmonic, and ∼15 J/cm2 for the fundamental pulses. Further increasing the fluence leads to a steep increase of the ablation rate at both wavelengths, the increase of the ablation rate being approximately exponential in the case of visible pulses. The jump of the ablation rate at the threshold fluence value is due to the transition from a normal vaporization regime to a phase explosion regime, and to the change of the dimensionality of the hydrodynamics of the plasma-plume.


  • Department of Physics, University “Politehnica” of Bucharest, Spl. Independendei 313, 060042, Bucharest, Romania
  • Department of Physics, University “Politehnica” of Bucharest, Spl. Independendei 313, 060042, Bucharest, Romania
  • Department of Physics, University “Politehnica” of Bucharest, Spl. Independendei 313, 060042, Bucharest, Romania


  • [1] J.F. Ready, Effects of high-power laser radiation (Academic Press, New York-London, 1971)
  • [2] D. Bauerle, Laser processing and chemistry (Springer-Verlag, Berlin-Heidelberg-New York, 2000)
  • [3] I.M. Popescu et al., Aplicatii ale laserilor, (Ed. Tehnica, Bucuresti, 1979, in Romanian)
  • [4] D. Bauerle, Proceedings of an International Conference Laser Processing and Diagnostics, University of Linz (Springer-Verlag, Berlin Heidelberg, 1984)
  • [5] M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials (Springer-Verlag, Berlin, 1995)
  • [6] I. Ursu, I. N. Mihailescu, A. M. Prokhorov, V. I. Konov, Interactiunea radiatiei laser cu metalele (Editura Academiei R.S.R., Bucuresti, 1986, in Romanian)
  • [7] P. Simon, J. Ihlemann, Appl. Phys. A 63, 505 (1996) http://dx.doi.org/10.1007/BF01571681[Crossref]
  • [8] B.N. Chichkov et al., Appl. Phys. A 63, 109 (1996) http://dx.doi.org/10.1007/BF01567637[Crossref]
  • [9] A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003) http://dx.doi.org/10.1007/s00339-002-1823-8[Crossref]
  • [10] S.M. Klimentov et al., Physics of Wave Phenomena 15, 1 (2007) http://dx.doi.org/10.3103/S1541308X07010013[Crossref]
  • [11] S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, J. Phys. B 32, 131 (1999) http://dx.doi.org/10.1088/0953-4075/32/14/201[Crossref]
  • [12] B.W. Rottke, J. Ihlemann, H. Schmidt, A. Scholl, Appl. Phys. A 60, 13 (1995) http://dx.doi.org/10.1007/BF01577606[Crossref]
  • [13] A. Bogaerts, Z. Chen, Spectrochimica Acta B 60, 1280 (2005) http://dx.doi.org/10.1016/j.sab.2005.06.009[Crossref]
  • [14] M. Stafe, C. Negutu, I.M. Popescu, Shock Waves 14, 123 (2005) http://dx.doi.org/10.1007/s00193-004-0240-7[Crossref]
  • [15] M. Safe, C. Negutu, I.M. Popescu, Appl. Surf. Sci. 253, 6353 (2007) http://dx.doi.org/10.1016/j.apsusc.2007.01.060[Crossref]
  • [16] N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)
  • [17] B. Garrison, T. Itina, L. Zhigilei, Phys. Rev. E 68, 041501 (2003)
  • [18] E.G. Gamaly, A.V. Rode, A. Perrone, A. Zocco, Appl. Phys. A 73, 143 (2001) http://dx.doi.org/10.1007/s003390100876[Crossref]
  • [19] C. Porneala, D.A. Willisa, Appl. Phys. Lett. 89, 211121 (2006)
  • [20] J.M. Fishburn, M.J. Withford, D.W. Coutts, J.A. Piper, Appl. Optics 43, 6473 (2004) http://dx.doi.org/10.1364/AO.43.006473[Crossref]
  • [21] M.R.H. Knowles, G. Rutterford, D. Karnakis, A. Ferguson, The International Journal of Advanced Manufacturing Technology 33, 95 (2007) http://dx.doi.org/10.1007/s00170-007-0967-2[Crossref]
  • [22] A. Semerok et al., Appl. Surf. Sci. 138–139, 311 (1999) http://dx.doi.org/10.1016/S0169-4332(98)00411-5[Crossref]
  • [23] S. Amoruso, M. Armenante, V. Berardi, R. Bruzzese, N. Spinelli, Appl. Phys. A 65, 265 (1997) http://dx.doi.org/10.1007/s003390050577[Crossref]
  • [24] Q. Lu, Phys. Rev. E, 67, 016410 (2003)

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.