PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 2 | 211-222
Article title

Finite-element simulation of ultrasound brain surgery: effects of frequency, focal pressure, and scanning path in bone-heating reduction

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, the finite-element method (FEM) simulation of ultrasound brain surgery is presented. The overheating problem of the post-target bone, which is one of the limiting factors for a successful ultrasound brain surgery, is considered. In order to decrease bone heating, precise choices of frequency, focal pressure, and scanning path are needed. The effect of variations in the mentioned scanning parameters is studied by means of the FEM. The resulting pressure and temperature distributions of a transdural ultrasound brain surgery are simulated by employing the FEM for solving the Helmholtz and bioheat equations in the context of a two-dimensional MRI-based brain model. Our results show that for a suitable value of the frequency, an increase in focal pressure leads to a decrease in the required duration of the treatment and is associated with less heating of the surrounding normal tissue. In addition, it is shown that at a threshold focal pressure, the target temperature reaches toxic levels whereas the temperature rise in the bone is minimal. Wave reflections from sinus cavities, which result in constructive interference with the incoming waves, are one of the reasons for overheating of the bone and can be avoided by choosing a suitable scanning path.
Publisher

Journal
Year
Volume
6
Issue
2
Pages
211-222
Physical description
Dates
published
1 - 6 - 2008
online
26 - 3 - 2008
Contributors
author
author
  • Department of Physics, Urmia University, Urmia, Iran
  • Department of Biomedical Engineering, Sahand University, Sahand, Iran
author
  • Department of Physics, IAU, Urmia, Iran
References
  • [1] K. Hynynen, F.A. Jolesz, Ultrasound. Med. Biol. 24, 275 (1998) http://dx.doi.org/10.1016/S0301-5629(97)00269-X[Crossref]
  • [2] B. Stea et al., Int. J. Radiat. Oncol. 19, 1463 (1990) http://dx.doi.org/10.1016/0360-3016(90)90359-R[Crossref]
  • [3] P.K. Sneed, B. Stea, Thermoradiotherapy for brain tumors, In: M.H. Seegenchmiedet, P. Fessenden, C.C. Vernon, (Eds.), Thermoradiotherapy and Thermotherapy (Springer-Verlag, Heidelberg, Berlin 1996)
  • [4] P.K. Sneed et al., Neurosyrgery. 28, 206 (1991) http://dx.doi.org/10.1097/00006123-199102000-00006[Crossref]
  • [5] S. Vaezy, M. Andrew, P. Kaczkowski, L. Crum, Annu. Rev. Biomed. Eng. 3, 375 (2001) http://dx.doi.org/10.1146/annurev.bioeng.3.1.375[Crossref]
  • [6] G.T. Clement, Ultrasonics 42, 1087 (2004) http://dx.doi.org/10.1016/j.ultras.2004.04.003[Crossref]
  • [7] C.J. Diederich, K. Hynynen, Ultrasound. Med. Biol. 25, 871 (1999) http://dx.doi.org/10.1016/S0301-5629(99)00048-4[Crossref]
  • [8] K. Hynynen, In: S.C. Schneider, M. Levy, B.R. McAvoy (Eds.), IEEE Ultrasonics Symposium, 5–8 Oct. 1997, Toronto, Canada (IEEE, New York 1997) 1305
  • [9] J.G. Lynn, R.L. Zwemer, A.J. Chick, A.E. Miller, J. Gen. Physiol. 26, 179 (1942) http://dx.doi.org/10.1085/jgp.26.2.179[Crossref]
  • [10] J.G. Lynn, T.J. Putnam, Am. J. Path. 20, 637 (1944)
  • [11] P.D. Wall, W.J. Fry, R. Stephens, D. Tucker, J.Y. Lettvin, Science 114, 686 (1951) http://dx.doi.org/10.1126/science.114.2974.686[Crossref]
  • [12] W.J. Fry, W. Mosberg, J.W. Barnard, F.J. Fry, J. Neurosurg. 11, 471 (1954) http://dx.doi.org/10.3171/jns.1954.11.5.0471[Crossref]
  • [13] W.J. Fry, J.W. Barnard, F.J. Fry, R.F. Krumins, J.F. Brennan, Science 122, 517 (1955) http://dx.doi.org/10.1126/science.122.3168.517[Crossref]
  • [14] W.J. Fry, F.J. Fry, IRE. Trans. Med. Electron ME-7, 166 (1960) [Crossref]
  • [15] R.F. Heimburger, Indiana Med. 78, 469 (1985)
  • [16] A.N. Guthkelch et al., J. Neurooncol. 10, 272 (1991) http://dx.doi.org/10.1007/BF00177540[Crossref]
  • [17] N. McDannold et al., Magn. Reson. Med. 49, 1188 (2003) http://dx.doi.org/10.1002/mrm.10453[Crossref]
  • [18] Z. Ram et al., Neurosurgery 59, 949 (2006) [PubMed]
  • [19] J.W. Park, S. Jung, T.Y. Junt, M.C. Lee, AIP Conf. Proc. 829, 238 (2006) http://dx.doi.org/10.1063/1.2205473[Crossref]
  • [20] R.Z. Cohen et al., Neurosurgery. 60, 593 (2007) http://dx.doi.org/10.1227/01.NEU.0000245606.99946.C6[Crossref]
  • [21] J. Sun, K. Hynynen, J. Acoust. Soc. Am. 104, 1705 (1998) http://dx.doi.org/10.1121/1.424383[Crossref]
  • [22] G. Clement, J. Sun, T. Giesecke, K. Hynynen, Phys. Med. Biol. 45, 3707 (2000) http://dx.doi.org/10.1088/0031-9155/45/12/314[Crossref]
  • [23] K. Hynynen et al., Eur. J. Radiolo. 59, 149 (2006) http://dx.doi.org/10.1016/j.ejrad.2006.04.007[Crossref]
  • [24] W.L. Lin, C.T. Liauh, J.Y. Yen, Y.Y Chen, M.J. Shieh, Int. J. Radiat. Oncol. 46, 239 (2000) http://dx.doi.org/10.1016/S0360-3016(99)00421-6[Crossref]
  • [25] P.M. Meany, R.L. Clarke, G. Ter Haar, I. Rivens, Ultrasound. Med. Biol. 24, 1489 (1998) http://dx.doi.org/10.1016/S0301-5629(98)00102-1[Crossref]
  • [26] A.D. Pierce (Ed.), Acoustics: An Introduction to its Physical Principles and Applications (Acoustical Society of America, New York, 1994)
  • [27] A. Bhatia (Ed.), Ultrasound absorption: an introduction to the theory of sound absorption and dispersion in gases, liquids and solids (Dover Publications, New York, 1967)
  • [28] H.H Pennes, J. App. Physiol. 1, 93 (1948)
  • [29] F. Ihlenburg (Ed.), Finite Element Analysis of Acoustic Scattering (Springer, New York, 1998)
  • [30] K. Hynynen, Ultrasound. Med. Biol. 17, 157 (1991) http://dx.doi.org/10.1016/0301-5629(91)90123-E[Crossref]
  • [31] S.A. Goss, R.L. Johnson, F. Dunn, J. Acoust. Soc. Am. 64, 423 (1978) http://dx.doi.org/10.1121/1.382016[Crossref]
  • [32] S.A. Goss, R.L. Johnson, F. Dunn, J. Acoust. Soc. Am. 68, 93 (1980) http://dx.doi.org/10.1121/1.384509[Crossref]
  • [33] E.G. Moros, R.B. Roemer, K. Hynynen, Int. J. Hyperther. 6, 351 (1990) http://dx.doi.org/10.3109/02656739009141143[Crossref]
  • [34] F.J. Fry, J.E. Barger, J. Acoust. Soc. Am. 63, 1576 (1978) http://dx.doi.org/10.1121/1.381852[Crossref]
  • [35] F. Duck (Ed.), Physical properties of tissue: a Comperhensive handbook (Publisher, Lodon, 1990)
  • [36] F.P. Incorpera, D. P. Dewitt (Ed.), Fundamentals of heat and mass transfer (John Wiley and Sons, New York, 2001)
  • [37] J.C. Chato (Ed.), Fundamentals of bioheat transfer. In thermal dosimetry and treatment planning (Springer-Verlag, New York, 1990)
  • [38] C.J. Henschel, J. Dent. Res. 22, 323 (1943)
  • [39] T.E. Cooper, G.J. Trezek, J. Heat Transfer. 94, 133 (1972)
  • [40] J.E. Kennedy, G. Ter Haar, D. Cranston, Br. J. Radiol. 76, 590 (2003) http://dx.doi.org/10.1259/bjr/17150274[Crossref]
  • [41] K. Hynynen et al., Int. J. Hyperther. 6, 891 (1990) http://dx.doi.org/10.3109/02656739009140971[Crossref]
  • [42] S. Behnia, F. Ghalichi, A. Bonabi, A. Jafari, Jpn. J. Appl. Phys. 45, 1856 (2006) http://dx.doi.org/10.1143/JJAP.45.1856[Crossref]
  • [43] J.M. Huttunen, T. Huttunen, M. Malinen, J.P. Kaipio, Phys. Med. Biol. 51, 1011 (2006) http://dx.doi.org/10.1088/0031-9155/51/4/017[Crossref]
  • [44] E. Moros, R.B. Roemer, K. Hynynen, IEEE. T. Ultrason. Ferr. 35, 552 (1988) http://dx.doi.org/10.1109/58.8033[Crossref]
  • [45] K. Hynynen, De. Young, D. Kundrat, E. Moros, Int. J. Hyperther. 5, 485 (1989) http://dx.doi.org/10.3109/02656738909140473[Crossref]
  • [46] B.E. Billard, K. Hynynen, R.B. Roemer, Ultrasound. Med. Biol. 16, 409 (1990) http://dx.doi.org/10.1016/0301-5629(90)90070-S[Crossref]
  • [47] M.C. Kolios, M.D. Sherar, J. W. Hunt, Med. Phys. 23, 1287 (1996) http://dx.doi.org/10.1118/1.597694[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0015-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.