PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 1 | 171-177
Article title

Quantum cards and quantum rods

Content
Title variants
Languages of publication
EN
Abstracts
EN
Quantum mechanical analysis of a rigid rod with one end fixed to a flat table is presented. Assuming that the rod is initally in the upright orientation, “the time of fall” is calculated using WKB wavefunctions representing energy eigenstates near the barrier summit.
Publisher

Journal
Year
Volume
6
Issue
1
Pages
171-177
Physical description
Dates
published
1 - 3 - 2008
online
26 - 3 - 2008
Contributors
author
  • Faculty of Maritime Studies and Transport, University of Ljubljana, Pot pomoršèakov 4, 6320, Portorož, Slovenia, milan.batista@fpp.edu
  • Division of Mathematics and Physics, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1001, Ljubljana, Slovenia
References
  • [1] M. Tegmark, J. Wheeler, Sci. Am. 54, 54 2001
  • [2] M. Batista, J. Peternelj, arXiv:physics/0607080
  • [3] W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003) http://dx.doi.org/10.1103/RevModPhys.75.715[Crossref]
  • [4] S. L. Adler, Stud. Hist. Philos. Mod. Phys. 348, 135 (2003) http://dx.doi.org/10.1016/S1355-2198(02)00086-2[Crossref]
  • [5] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Knopf, New York, 2006)
  • [6] L.S. Schulman, J. Math. Phys. 12, 304 (1971) http://dx.doi.org/10.1063/1.1665592[Crossref]
  • [7] J.S. Dowker, J. Phys. A 5, 936 (1972) http://dx.doi.org/10.1088/0305-4470/5/7/004[Crossref]
  • [8] J. Riess, Helv. Phys. Acta 45, 1066 (1972)
  • [9] M. Reed, B. Simon, Methods of Modern Theoretical Physics II (Academic Press, New York, 1975)
  • [10] K. Kowalski, K. Podlaski, J. Rembieliñski, Phys. Rev. A 66, 0321118 (2002)
  • [11] D. Z. Albert, Quantum Mechanics and Experience (Harvard UP, Cambridge, 1992)
  • [12] H.D. Zeh, Decoherence and the Appearance of a Classical World, In: D. Giulini et al. (Eds.), Quantum Theory (Springer, Berlin, 1996) 5
  • [13] L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1977)
  • [14] P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)
  • [15] K.W. Ford, D.L. Hill, M. Wakano, J.A. Wheeler, Ann. Phys. 7, 239 (1959) http://dx.doi.org/10.1016/0003-4916(59)90025-9[Crossref]
  • [16] N. Fröman, P.O. Fröman, Physical Problems Solved by the Phase Integral Method (Cambridge UP, Cambridge, 2002)
  • [17] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1968)
  • [18] R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982) http://dx.doi.org/10.1007/BF02650179[Crossref]
  • [19] J. Bell, Physics World, Aug. 1990, 33
  • [20] D.S. Saxon, Elementary Quantum Mechanics (Holden Day, San Francisco, 1968)
  • [21] J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00047-8[Crossref]
  • [22] W. Pauli, In: S. Flugge (Ed.), Encyklopedia od Physics 5/1 (Springer, Berlin, 1958)
  • [23] P. Claverie, G. Jona-Lasinio, Phys. Rev. A 33, 2245 (1986) http://dx.doi.org/10.1103/PhysRevA.33.2245[Crossref]
  • [24] M. Batista, M. Lakner, J. Peternelj, Eur. J. Phys. 25, 145 (2004) http://dx.doi.org/10.1088/0143-0807/25/2/002[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0012-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.