Preferences help
enabled [disable] Abstract
Number of results
2007 | 5 | 4 | 539-548
Article title

New dynamic scaling in increasing systems

Title variants
Languages of publication
We report a new dynamic scaling ansatz for systems whose system size is increasing with time. We apply this new hypothesis in the Eden model in two geometries. In strip geometry, we impose the system to increase with a power law, L ∼ h
a. In increasing linear clusters, if a < 1/z, where z is the dynamic exponent, the correlation length reaches the whole system, and we find two regimes: the first, where the interface fluctuations initially grow with an exponent β = 0.3, and the second, where a crossover comes out and fluctuations evolve as h
aα. If a = 1/z, there is not a crossover and fluctuations keep on growing in a unique regimen with the same exponent β. In particular, in circular geometry, a = 1, we find this kind of regime and in consequence, a unique regime holds.
Physical description
1 - 12 - 2007
1 - 12 - 2007
  • [1] A. J. Koch and H. Meinhardt: “Biological pattern-formation - From basic mechanisms to complex structures”, Rev. Mod. Phys., Vol. 66, (1994), pp. 1481–1507.[Crossref]
  • [2] M. C. Cross and P. C. Hohenberg: “Pattern-formation outside of equilibrium”, Rev. Mod. Phys., Vol. 65, (1993), pp. 851–1112.[Crossref]
  • [3] A.-L. Barabási and H. E. Stanley: Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, 1995.
  • [4] P. Meakin: Fractals, Scaling and Growth far from Equilibrium, Cambridge University Press, Cambridge, 1998.
  • [5] M. Eden, “A probabilistic model for morphogenesis”. In H. P. Yockey, R. L. Platzman and H. Quastler(Eds.): Symposium on Information Theory of Biology, Pergamon Press, New York, 1958, pp. 359–370.
  • [6] M. Eden: “A two-dimensional growth process”, In: J. Neyman (Eds.): Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV, Univ. of California Press, Berkeley, 1961, pp. 223–239.
  • [7] R. Jullien and R. Botet:“Scaling properties of the surface of the Eden model in d = 2, 3, 4”, J. Phys. A, Vol. 18, (1985), pp. 2279–2287.[Crossref]
  • [8] M. Plischke, Z. Rácz, and D. Liu: “Time-reversal invariance and universality of two-dimensional growth models”, Phys. Rev. B, Vol. 35, (1987), pp. 3485–3495.[Crossref]
  • [9] F. Family and T. Vicsek: “Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model”, J. Phys. A, Vol. 18, (1985), pp. L75–L81.[Crossref]
  • [10] J. J. Ramasco, J. M. López, and M. A. Rodríguez: “Generic dynamic scaling in kinetic roughening”, Phys. Rev. Lett., Vol. 84, (2000), pp. 2199–2202.[Crossref]
  • [11] P. Meakin, R. Jullien, and R. Botet:“Large-scale numerical investigation of the surface of Eden clusters”, Europhys. Lett., Vol. 1, (1986), pp. 609–615.[Crossref]
  • [12] J. G. Zabolitzky and D. Stauffer: “Simulation of large Eden clusters”, Phys. Rev. A, Vol. 34, (1986), pp. 1523–1530.[Crossref]
  • [13] P. Freche, D. Stauffer, and H. E. Stanley: “Surface-structure and anisotropy of Eden Clusters”, J. Phys. A, Vol. 18, (1985), pp. L1163–1168.[Crossref]
  • [14] L. R. Paiva and S. C. Ferreira Jr.: J. Phys. A-Math. Theor, Vol. 40, (2007), pp. F43–F49.[Crossref]
  • [15] A. Brú, S. Albertos, J. L. Subiza, J. L. García-Asenjo, and I. Brú: “The universal dynamics of tumor growth”, Biophys. J., Vol. 85, (2003), pp. 2984–2961.[Crossref]
  • [16] J. Galeano, J. Buceta, K. Juarez, B. Pumariño, J. de la Torre, and J. M. Iriondo: “Dynamical scaling analysis of plant callus growth”, Europhys. Lett., Vol. 63, (2003), pp. 83–89.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.