Preferences help
enabled [disable] Abstract
Number of results
2007 | 5 | 4 | 611-636
Article title

The role of F
A1:Ag+ defects in laser light generation and coadsorption of CO and halogen atoms at the KCl and KBr surface sites. First principles calculations

Title variants
Languages of publication
FA1:Ag+ color center at the low coordination (100) and (110) surface sites of KCl and KBr thin films play an important role in providing tunable laser oscillation and adsorbatesubstrate interactions. Double-well potentials at this site are investigated using ab initio molecular electronic structure calculations. The calculated Stokes shifted (optical transition bands), opticaloptical conversion efficiencies, the probability of orientational destruction, exciton (energy) transfer and Glasner-Tompkins empirical rule suggest that laser light generation is sensitive to (i) the lattice anion, (ii) the coordination number of surface ions, and (iii) the choice of the basis set centered on the anion vacancy. The adsorbate-substrate interactions were found to be dependent on the electronegativity of the adatom and on the lattice anion. Optimised geometries and the coadsorption of CO and (F, Cl, Br, I) on KCl and KBr (100) crystals are presented. Calculated chemisorption energies for CO on the (halogen atom/defect free sites of KCl and KBr (100) crystals) showed that the coadsorption of halogen atom tends to block other adsorbate-substrate interactions at the nearest neighbour sites. Thus if halogen atom coverage increases, the CO prefers to be adsorbed on the K+ site of the KCl and KBr (100) surfaces and on KBr relative to KCl.
Physical description
1 - 12 - 2007
1 - 12 - 2007
  • [1] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn and A.B. Holmes: “Light emitting-diodes based on conjugated polymers”, Nature, Vol. 347, (1990), pp. 539–541.[Crossref]
  • [2] L.F. Mollenauer, In: L.F. Mollenauer, J.C. White (Eds.): Tunable Lasers, Springer, Berlin, 1987 (Chapter 6).
  • [3] W. Gellermann: “Color center lasers”, J. Phys. Chem. Solids, Vol. 52, (1991), pp. 249–297.[Crossref]
  • [4] T.T. Basiev, S.B. Mirov (Eds.): Room Temperature Tunable Color Center Lasers, Harwood, Academic Publishers, Switzerland, 1994.
  • [5] V.V. Ter-Mikirtychev, T. Tsuboi: “Spectroscopic characteristics of color centers produced in a LiF crystal surface layer by microwave discharge”, Prog. Quant. Electr., Vol. 20, (1996), pp. 219–268.[Crossref]
  • [6] B. Fritz, E. Menke: “Laser effect in KCl with FA(Li) centers”, Solid Stat. Commun., Vol. 3, (1965), pp. 61–63.[Crossref]
  • [7] L.F. Mollenauer, D.H. Olson: “Broadly tunable lasers using color centers”, J. Appl. Phys., Vol. 46, (1975), pp. 3109–3118.[Crossref]
  • [8] F. Luty: “Physics of Color Centers”, W.B Fowler (Ed.), Chap. 3, Academic Press, New York, 1968.
  • [9] N. Akiyama, S. Muramatsu, M. Arai, K. Nakamura and G. Baldacchini: “Vibronic relaxation processes of FA centers in KCl:Li”, J. Lumin., Vol. 109, (2004), pp. 155–162. [Crossref]
  • [10] W. Van Puymbroeck, J.A. Andriessen and D. Schoemaker: “Complex Ga0(4p1) and In0(5p1) centers in KC1. Electron-spin-resonance study”, Phys. Rev. B, Vol. 24, (1981), p. 2412.
  • [11] W. Gellermann and F. Luty: Proceedings of the international Conference on Lasers 81, New Orleans, 1981 STS press, McLean, VA (1981).
  • [12] W. Gellermann et al.: “Optical Properties and Stable, Broadly Tunable CW Laser Operation of New \(F_{A^ - } \) Type Centers in Tl+-Doped Alkali Halides”, Optus Comm., Vol. 39, (1981), pp. 391–395.[Crossref]
  • [13] G.W. Hills: “Color center laser pumped with a DCM dye laser”, Optics Communications, Vol. 42, (1982), pp. 360–361; C. Domene, P.W. Fowler, M. Wilson, P.A. Madden and R.J. Wheatley: “Overlap-model and ab initio cluster calculations of ion properties in distorted environments”, Chem. Phys. Lett., Vol. 333, (2001), pp. 403-412; A.S. Shalabi, T.F. El-Essawy, M.M. Assem and S. Abdel-Aal: “Type I FA (Rb+, Cs+) and II FA (Li+, Na+) tunable laser activities and donor-acceptor properties of O and O− at KCl (001) surface: first principle calculations”, J. Phys. and Chem. Solids, Vol. 63, (2002), pp. 749-758; A.S. Shalabi, M.E. Nour, A.M. Morsi and W.A. Zordoc: “F+ laser performance and interaction of Cu, Ag and Au at the reduced oxygen coordination of MgO surface: first principles calculations”, Curr. Appl. Phys., Vol. 1, (2001), pp. 427-437; A.S. Shalabi: “FA(I):Au+ and FA(II)Cu+ laser activity and photographic sensitization at the low coordinated surfaces of AgBr: ab initio calculations”, J. Comput. Chem., Vol. 23, (2002), pp. 1104-1120; A.S. Shalabi, I.A.Z. Alansari, K.Kh. Al-Naimi, M.A. Kamel, A.M. El-Mahdy, H.O. Taha and M.M. Shalaby: “The role of FA:K+ and FA:Na+ defects in laser light generation and color image formation at the (100) and (110) surface sites of AgCl and AgBr first principles calculations”, Phys. Chem. Chem. Phys., Vol. 6, (2004), pp. 626-637.[Crossref]
  • [14] E.A. Colbourn: “Adsorption and reactions at surfaces”, Rev. Solid State Sci., Vol. 5, (1991), pp. 91–105, and references 716 therein.
  • [15] H.M. Evjen: “On the Stability of Certain Heteropolar Crystals”, Phys. Rev., Vol. 39, (1932), pp. 675–687.[Crossref]
  • [16] G.T. Surrat and A.B. Kunz: “Theoretical Study of H Chemisorption on NiO Surface”, Phys. Rev. Lett., Vol. 40, (1978), pp. 347–350.[Crossref]
  • [17] E.A. Colbourn and W.C. Mackrodt: “Theoretical aspects of H2 and CO chemisorption on MgO surfaces”, Surf. Sci., Vol. 117, (1982), pp. 571–580.[Crossref]
  • [18] Z. Barandiaran and L. Seijo: “The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu+”, J. Chem. Phys., Vol. 89, (1988), pp. 5739–5749.[Crossref]
  • [19] E.A. Colbourn: “Computer simulation of defects and reactions at oxide surfaces”, Surf. Sci. Rep., Vol. 15, (1992), pp. 281–319.[Crossref]
  • [20] E.A. Colbourn, In: Advances in Solid State Chemistry, C.R.A. Catlow (Ed.), JAI Press, London, Vol. 1, 1999.
  • [21] A.S. Shalabi, A.M. El-Mahdy, M.A. Kamel and H.Y. Ammar: “Excitons, electron center diffusion and adsorptivity of atomic H on LiH (0 0 1) surface”, Phys. B, Vol. 292, (2000), pp. 59–70; A.S. Shalabi, Kh.M. Eid, M.A. Kamel and Z.M. Fathi: “M Center Diffusion, Excitons and Adsorptivity of Atomic H and He on LiH (001) Surface: ab initio Study”, Int. J. Mod. Phys. C, Vol. 11, (2001), pp. 1491-1507.
  • [22] A.S. Shalabi, A.M. El-Mahdy, M.A. Kamel and G.H. Ismail: “STH centers in LiF and NaH crystals: ab initio calculations”, J. Phys. Chem. Solids, Vol. 60, (2001), pp. 1007–1013; A.S. Shalabi, A.M. El-Mahdy, M.A. Kamel and H.Y. Ammar: “Properties of F+, F and F− electron centers and adsorptivity of atomic H on LiF and NaH isoelectronic crystals: an ab initio study”, Phys. B, Vol. 304, (2001), pp. 444-455.[Crossref]
  • [23] A.S. Shalabi and A.M. El-Mahdy: “An ab initio approach to bulk and surface properties of many-body energies and adsorptivity in MgO crystal”, J. Phys. Chem. Solids, Vol. 60, (1999), pp. 305–315; A.S. Shalabi and A.M. El-Mahdy: “Adsorptivity of atomic H and coadsorptivity of Mg and O ions on regular and irregular surfaces of MgO: DFT calculations”, Phys. Lett. A, Vol. 281, (2001), pp. 176-186.[Crossref]
  • [24] W.B. Fowler and D.L. Dexter: “Detailed Balance in Optical Transitions in Molecules and Solids”, J. Chem. Phys., Vol. 43, (1965), pp. 1768–1772.[Crossref]
  • [25] F. Luty: Physics of Color Centers, W.B. Fowler (Ed.), Academic Press, New York, 1968, ch. 3.
  • [26] J.B. Foresman, M. Head-Gordon, J.A. Pople and M.J. Frisch: “Toward a systematic molecular orbital theory for excited states”, J. Phys. Chem., Vol. 96, (1992), pp. 135–149; J.B. Foresman and J.B. Foresman: Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., Pittsburgh, PA, 1996.[Crossref]
  • [27] A.L. Shluger, P.V. Sushko and L.N. Kantorovich: “Spectroscopy of low-coordinated surface Theoretical study of MgO sites”, Phys. Rev. B, Vol. 59, (1999), pp. 2417–2430.[Crossref]
  • [28] C. Sousa and F. Illas: “On the accurate prediction of the optical absorption energy of F-centers in MgO from explicitly correlated ab initio cluster model calculations”, J. Chem. Phys., Vol. 115, (2001), pp. 1435–1439.[Crossref]
  • [29] W. Kohn and L.J. Sham: “Self-consistent equations including exchange and correlation effects”, Phys. Rev. A, Vol. 140, (1965), pp. A1133–A1138.
  • [30] A.D. Becke: “Density-functional thermochemistry. The role of exact exchange”, J. Chem. Phys., Vol. 98, (1993), pp. 5648–5652.[Crossref]
  • [31] A.D. Becke: “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, Vol. 38, (1988), pp. 3098–3100.[Crossref]
  • [32] C. Lee, W. Yang and R.G. Parr: “Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density”, Phys. Rev. B, Vol. 37, (1988), pp. 785–789; B. Miehlich, A. Savin, H. Stoll and H. Preuss: “Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr”, Chem. Phys. Lett., Vol. 157, (1989), pp. 200-206.[Crossref]
  • [33] W. Stevens, H. Basch and J. Krauss: “Compact effective potentials and efficient shared-exponent basis sets for the first-and second-row atoms”, J. Chem. Phys., Vol. 81, (1984), pp. 6026–6033; T.R. Cundari and W.J. Stevens: “Effective core potential methods for the lanthanides”, J. Chem. Phys., Vol. 98, (1993), pp. 5555-5565.[Crossref]
  • [34] M.J. Frisch et al.: Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh PA, 1998.
  • [35] E. Garrone, A. Zecchina, F.S. Stone: “An experimental and theoretical evaluation of surface states in MgO and other alkaline earth oxides”, Philos. Mag. B, Vol. 42, (1980), pp. 683–703. [Crossref]
  • [36] D.B. Fitchen: Physics of Color Centers, W.B. Fowler (Ed.), Academic Press, New York, 1968, ch. 5.
  • [37] A.L. Shluger, P.V. Sushko and L.N. Kantorovich: “Spectroscopy of low-coordinated surface sites: Theoretical study of MgO”, Phys. Rev. B, Vol. 59, (1999), pp. 2417–2430.[Crossref]
  • [38] A. Cox and A.A. Williams: “Surface excitons on ionic crystals”, Surf. Sci., Vol. 175, (1986), pp. 782–786.[Crossref]
  • [39] A. Glasner and F.C. Tompkins: “Note on Some Regularities of the Absorption Band Maxima of Colored Alkali Metal Halides”, J. Chem. Phys., Vol. 21, (1953), pp. 1817–1818.[Crossref]
  • [40] M.S. Malghani and D.Y. Smith: “The Glasner-Tompkins relation between F-center and exciton absorptions in ionic solids”, J. Phys. Chem. Solids, Vol. 53, (1992), pp. 831–840.[Crossref]
  • [41] A.S. Shalabi, A.M. El-Mahdy, Kh.M. Eid, M.A. Kamel and A.A. El-Barbary: “Glasner-Tompkins relation and reorientation of U centers in LiF crystals”, Phys. Rev. B, Vol. 60, (1999), pp. 9377–9382.[Crossref]
  • [42] A.S. Shalabi, T.F. El-Essawy, M.M. Assem and S. Abdel-Aal: “FA(Ga+,In+,Tl+) tunable laser activity and interaction of halogen atoms (F,Cl,Br,I,At) at the (0 0 1) surface of KCl crystal: ab initio calculations”, Curr. Appl. Phys., Vol. 2, (2002), 97–105; A.S. Shalabi, T.F. El-Essawy, M.M. Assem and S. Abdel-Aal: “F2+ laser activity and photographic sensitization at the low coordinated surfaces of AgBr: ab initio calculations”, Physica B, Vol. 315, (2002), pp. 13-28.
  • [43] R.S. Knox: Theory of excitons, Academic Press, New York, 1963; V.G. Plekhanov: “Isotope-induced energy-spectrum renormalization of the Wannier-Mott exciton in LiH crystals”, Phys. Rev. B, Vol. 54, (1996), pp. 3869-3877; G.F. Koster and J.C. Slater: “Wave Functions for Impurity Levels”, Phys. Rev., Vol. 95, (1954), pp. 1167-1176; G.F. Koster and J.C. Slater: “Simplified Impurity Calculation”, Phys. Rev., Vol. 96, (1954), pp. 1208-1223; J.H. Crawford and L.M. Slifkin: Point defects in Solids, Plenum, New York, 1972; W. Hayes and A.A. Stoneham: Defects and Defect Processes in Non-Metallic Solids, Wiley, New York, 1985.
  • [44] R. Hilsch and R.W. Pohl: “Die in Luft meβbaren ultravioletten Dispersionsfrequenzen der Alkalihalogenide”, Z. Phys., Vol. 57, (1929), pp. 145–153; R. Hilsch and R.W. Pohl: “Einige Dispersionsfrequenzen der Alkalihalogenidkristalle im Schumanngebiet”, Z. Phys., Vol. 59, (1930), pp. 812-819.[Crossref]
  • [45] S. Mahmud and E.R. Davidson: “Theoretical study of the adsorption of carbon monoxide on a NaCl (100) surface”, Surf. Sci., Vol. 322, (1995), pp. 342–360.[Crossref]
  • [46] H.H. Richardson, C. Baumann and G.E. Ewing: “Infrared spectroscopy and thermodynamic measurements of CO on NaCl films”, Surf. Sci., Vol. 185, (1987), pp. 15–35.[Crossref]
  • [47] H.-C Chang and G.E. Ewing: “The quantum efficiency of vibrationally induced desorption for a monolayer of CO on NaCl(100)”, Chem. Phys., Vol. 139, (1989), pp. 55–65.[Crossref]
  • [48] Y. Li, J.M. Hu, J.Q. Li and Y.F. Zhang: “Coadsorption of CN and O on Cu (100) surface: A density functional study”, Appl. Surf. Sci., Vol. 252, (2006), pp. 5636–5644.[Crossref]
  • [49] L. Anchell, K. Morokuma and A.C. Hess: “An electronic structure study of H2 and CH4 interactions with MgO and Li-doped MgO clusters”, J. Chem. Phys., Vol. 99, (1993), pp. 6004–6013.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.