PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2007 | 5 | 3 | 313-323
Article title

Constructing the time independent Hamiltonian from a time dependent one

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we introduce a method for finding a time independent Hamiltonian of a given Hamiltonian dynamical system by canonoid transformation of canonical momenta. We find a condition that the system should satisfy to have an equivalent time independent formulation. We study the example of a damped harmonic oscillator and give the new time independent Hamiltonian for it, which has the property of tending to the standard Hamiltonian of the harmonic oscillator as damping goes to zero.
Publisher

Journal
Year
Volume
5
Issue
3
Pages
313-323
Physical description
Dates
published
1 - 9 - 2007
online
13 - 5 - 2007
Contributors
  • Center of Mathematics and Physics, Technical University of Łódź, Al. Politechniki 11, 90-924, Łódź, Poland, mdobrski@im0.p.lodz.pl
References
  • [1] F. Gantmacher: Lectures in Analytical Mechanics, Mir Publishers, Moscow, 1970.
  • [2] V.I. Arnold: Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978.
  • [3] R.M. Santilli: Foundations of Theoretical Mechanics I, Springer-Verlag, New York, 1978.
  • [4] R.M. Santilli: Foundations of Theoretical Mechanics II, Springer-Verlag, New York, 1983.
  • [5] G. Morandi et al.: “The inverse problem in the calculus of variations and the geometry of the tangent bundle”, Phys. Rep., Vol. 188, (1990), pp. 147–284. http://dx.doi.org/10.1016/0370-1573(90)90137-Q[Crossref]
  • [6] Y. Gelman and E.J. Saletan: “q-Equivalent particle Hamiltonians”, Nuovo Cimento B, Vol. 18, (1973), pp. 53–89.
  • [7] P. Havas: “The range of application of Lagrange formalism”, Suppl. Nuovo Cimento, Vol. 5, (1957), pp. 364–388.
  • [8] J.F. Plebański and H. Garcá-Compeán: “The Lagrangian for a causal curve”, Rev. Mex. Fis., Vol. 43, (1997), pp. 634–648.
  • [9] G. Dito and F.J. Turrubiates: “The damped harmonic oscillator in deformation quantization”, Phys. Lett. A, Vol. 352, (2006), pp. 309–316. http://dx.doi.org/10.1016/j.physleta.2005.12.013[Crossref]
  • [10] Inverse of the regularized incomplete beta function, Wolfram Research, http://functions.wolfram.com/GammaBetaErf/InverseBetaRegularized/.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-007-0024-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.