Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 3 | 313-323

Article title

Constructing the time independent Hamiltonian from a time dependent one

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we introduce a method for finding a time independent Hamiltonian of a given Hamiltonian dynamical system by canonoid transformation of canonical momenta. We find a condition that the system should satisfy to have an equivalent time independent formulation. We study the example of a damped harmonic oscillator and give the new time independent Hamiltonian for it, which has the property of tending to the standard Hamiltonian of the harmonic oscillator as damping goes to zero.

Publisher

Journal

Year

Volume

5

Issue

3

Pages

313-323

Physical description

Dates

published
1 - 9 - 2007
online
13 - 5 - 2007

Contributors

  • Center of Mathematics and Physics, Technical University of Łódź, Al. Politechniki 11, 90-924, Łódź, Poland

References

  • [1] F. Gantmacher: Lectures in Analytical Mechanics, Mir Publishers, Moscow, 1970.
  • [2] V.I. Arnold: Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978.
  • [3] R.M. Santilli: Foundations of Theoretical Mechanics I, Springer-Verlag, New York, 1978.
  • [4] R.M. Santilli: Foundations of Theoretical Mechanics II, Springer-Verlag, New York, 1983.
  • [5] G. Morandi et al.: “The inverse problem in the calculus of variations and the geometry of the tangent bundle”, Phys. Rep., Vol. 188, (1990), pp. 147–284. http://dx.doi.org/10.1016/0370-1573(90)90137-Q[Crossref]
  • [6] Y. Gelman and E.J. Saletan: “q-Equivalent particle Hamiltonians”, Nuovo Cimento B, Vol. 18, (1973), pp. 53–89.
  • [7] P. Havas: “The range of application of Lagrange formalism”, Suppl. Nuovo Cimento, Vol. 5, (1957), pp. 364–388.
  • [8] J.F. Plebański and H. Garcá-Compeán: “The Lagrangian for a causal curve”, Rev. Mex. Fis., Vol. 43, (1997), pp. 634–648.
  • [9] G. Dito and F.J. Turrubiates: “The damped harmonic oscillator in deformation quantization”, Phys. Lett. A, Vol. 352, (2006), pp. 309–316. http://dx.doi.org/10.1016/j.physleta.2005.12.013[Crossref]
  • [10] Inverse of the regularized incomplete beta function, Wolfram Research, http://functions.wolfram.com/GammaBetaErf/InverseBetaRegularized/.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-007-0024-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.