PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2007 | 5 | 3 | 428-445
Article title

On formation of thin SiO2/a-Si:H interface when biased oxidized semiconductor surface interacts with plasma or liquid solution

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we present the results of research into a relation(s) between the bias voltage of an oxide/a-Si:H/c-Si sample during formation of very-thin and thin oxides and the resulting distribution of oxide/semiconductor interface states in the a-Si:H band gap. Two oxygen plasma sources were used for the first time in our laboratories for formation of oxide layers on a-Si:H: i) inductively coupled plasma in connection with its application at plasma anodic oxidation; ii) rf plasma as the source of positive oxygen ions for the plasma immersion ion implantation process. The oxide growth on a-Si:H during plasma anodization is also simply described theoretically. Properties of plasmatic structures are compared to ones treated by chemical oxidation that uses 68 wt% nitric acid aqueous solutions. We have confirmed that three parameters of the oxide growth process - kinetic energy of interacting particles, UV-VIS-NIR light emitted by plasma sources, and bias of the samples - determine the distribution of defect states at both the oxide/a-Si:H interface and the volume of the a-Si:H layer, respectively. Additionally, a bias of the sample applied during the oxide growth process has a similar impact on the distribution of defect states as it can be observed during the bias-annealing of similar MOS structure outside of the plasma reactor.
Contributors
author
  • Institute of Physics SAS, Dúbravská cesta 9, 845 11, Bratislava, Slovak Republic
  • Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Organization, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
  • Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Organization, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
  • Department of Engineering Fundamentals, Faculty of Electrical Engineering, University of Žilina, 031 01, Liptovský Mikuláš, Slovak Republic
  • Institute of Physics SAS, Dúbravská cesta 9, 845 11, Bratislava, Slovak Republic
References
  • [1] J. Liu, G.L. Huppert and H.H. Sawin: “Ion bombardment in rf plasmas”, J. Appl. Phys., Vol. 68, (1990), pp. 3916–3934. http://dx.doi.org/10.1063/1.346278[Crossref]
  • [2] J.K. Olthoff, R.J. Van Brunt, S.B. Radovanov, J.A. Rees and R. Surowiec: “Kinetic-energy distributions of ions sampled from argon plasmas in a parallel-plate, radiofrequency reference cell”, J. Appl. Phys., Vol. 75, (1994), pp. 115–125. http://dx.doi.org/10.1063/1.355898[Crossref]
  • [3] A.D. Kuypers and H.J. Hopman: “Measurement of ion energy distributions at the powered rf electrode in a variable magnetic field”, J. Appl. Phys., Vol. 67, (1990), pp. 1229–1240. http://dx.doi.org/10.1063/1.345721[Crossref]
  • [4] M.A. Sobolewski, J.K. Olthoff and Y. Wang: “Ion energy distributions and sheath voltages in a radio-frequency-biased, inductively-coupled plasma reactor”, J. Appl. Phys., Vol. 85, (1999), pp. 3966–3975. http://dx.doi.org/10.1063/1.370298[Crossref]
  • [5] N. Mizutani and T. Hayashi: “Charge Exchange Ion Energy Distribution at the RF Electrode in a Plasma Etching Chamber”, Jpn. J. Appl. Phys., Vol. 38, (1999), pp. 4206–4212. http://dx.doi.org/10.1143/JJAP.38.4206[Crossref]
  • [6] E. Kawamura, V. Vahedi, M.A. Lieberman and C.K. Birdsall: “Ion Energy Distributions in RF Sheaths; Review, Analysis and Simulation”, Plasma Sources Sci. Technol., Vol. 8, (1999), pp. R45–R64. http://dx.doi.org/10.1088/0963-0252/8/3/202[Crossref]
  • [7] S.B. Wang and A.E. Wendt: “Control of ion energy distribution at substrates during plasma processing”, J. Appl. Phys., Vol. 88, (2000), pp. 643–646. http://dx.doi.org/10.1063/1.373715[Crossref]
  • [8] S. Rauf: “Effect of bias voltage waveform on ion energy distribution”, J. Appl. Phys., Vol. 87, (2000), pp. 7647–7651. http://dx.doi.org/10.1063/1.373435[Crossref]
  • [9] K. Maeshige, G. Washio, T. Yagisawa and T. Makabe: “Functional design of a pulsed two-frequency capacitively coupled plasma in CF4/Ar for SiO2 etching”, J. Appl. Phys., Vol. 91, (2002), pp. 9494–9501. http://dx.doi.org/10.1063/1.1478138[Crossref]
  • [10] T. Fujita and T. Makabe: “Diagnostics of a wafer interface of a pulsed two-frequency capacitively coupled plasma for oxide etching by emission selected computerized tomography”, Plasma Sources Sci. Technol., Vol. 11, (2002), pp. 142–145. http://dx.doi.org/10.1088/0963-0252/11/2/303[Crossref]
  • [11] K. Okazaki, T. Makabe and Y. Yamaguchi: “Modeling of a rf glow discharge plasma”, Appl. Phys. Lett., Vol. 54, (1989), pp. 1742–1744. http://dx.doi.org/10.1063/1.101277[Crossref]
  • [12] T. Makabe, N. Nakano and Y. Yamaguchi: “Modeling and diagnostics of the structure of rf glow discharges in Ar at 13.56 MHz”, Phys. Rev. A, Vol. 45, (1992), pp. 2520–2531. http://dx.doi.org/10.1103/PhysRevA.45.2520[Crossref]
  • [13] I. Jiménez and J.L. Sacedón: “Influence of Si oxidation methods on the distribution of suboxides at Si/SiO2 interfaces and their band alignment: a synchrotron photoemission study”, Surf. Sci., Vols. 482-485, (2001), pp. 272–278. http://dx.doi.org/10.1016/S0039-6028(01)00817-2[Crossref]
  • [14] H. Kobayashi, A. Asano, M. Takahashi, K. Yoneda and Y. Todokoro: “Decrease in gap states at ultrathin SiO2/Si interfaces by crown-ether cyanide treatment”, Appl. Phys. Lett., Vol. 77, (2000), pp. 4392–4394. http://dx.doi.org/10.1063/1.1332982[Crossref]
  • [15] K. Volz and W. Ensinger: “Growth of the carbide, nitride and oxide of silicon by plasma immersion ion implantation”, Surf. Coat. Technol., Vol. 156, (2002), pp. 237–243. http://dx.doi.org/10.1016/S0257-8972(02)00098-1[Crossref]
  • [16] E. Pinčík, H. Glesková, J. Műllerová, V. Nádaždy, S. Mráz, L. Ortega, M. Jergel, C. Falcony, R. Brunner, K. Gmucová, M. Zeman, R.A.C.M.M. van Swaaij, M. Kučera, R. Juráni and M. Zahoran: “Properties of semiconductor surfaces covered with very thin insulating overlayers prepared by impacts of low-energy particles”, Vacuum, Vol. 67, (2002), pp. 131–141. http://dx.doi.org/10.1016/S0042-207X(02)00201-4[Crossref]
  • [17] Asuha, T. Kobayashi, O. Maida, M. Inoue, M. Takahashi, Y. Todokoro and H. Kobayashi: “Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si”, Appl. Phys. Lett., Vol. 81, (2002), pp. 3410–3412. http://dx.doi.org/10.1063/1.1517723[Crossref]
  • [18] H. Águas, Y. Nunes, E. Fortunato, P. Gordo, M. Maneira and R. Martins: “Correlation between a-Si:H surface oxidation process and the performances of MIS structures”, Thin Solid Films, Vol. 383, (2001), pp. 185–188. http://dx.doi.org/10.1016/S0040-6090(00)01605-9[Crossref]
  • [19] O. Bowallius and S. Anand: “Evaluation of different oxidation methods for silicon for scanning capacitance microscopy”, Mat. Sci. In Semicond. Processing, Vol. 4, (2001), pp. 81–84. http://dx.doi.org/10.1016/S1369-8001(00)00170-0[Crossref]
  • [20] V. Nádaždy, R. Durný and E. Pinčík: “Evidence for the improved defect-pool model for gap states in amorphous silicon from charge DLTS experiments on undoped a-Si:H”, Phys. Rev. Lett., Vol. 78, (1997), pp. 1102–1105. http://dx.doi.org/10.1103/PhysRevLett.78.1102[Crossref]
  • [21] K. Winer: “Defect formation in a-Si:H”, Phys. Rev. B, Vol. 41, (1990), pp. 12150–12161; K. Winer: “Chemical-equilibrium description of the gap-state distribution in a-Si:H”, Phys. Rev. Lett., Vol. 63, (1989), pp. 1487–1490. http://dx.doi.org/10.1103/PhysRevB.41.12150[Crossref]
  • [22] M.J. Powell and S.C. Dean: “Improved defect-pool model for charged defects in amorphous silicon”, Phys. Rev. B, Vol. 48, (1993), pp. 10815–10827. http://dx.doi.org/10.1103/PhysRevB.48.10815[Crossref]
  • [23] M.J. Powell and S.C. Dean: “Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon”, Phys. Rev. B, Vol. 53, (1996), pp. 10121–10132. http://dx.doi.org/10.1103/PhysRevB.53.10121[Crossref]
  • [24] R.A.C.M.M. Van Swaaij, V. Nádaždy, M. Zeman, E. Pinčík and J.W. Metselaar: “Defect re-distribution in amorphous silicon below equilibration temperature”, J. Non-Cryst. Sol., Vols. 266-269, (2000), pp. 553–557. http://dx.doi.org/10.1016/S0022-3093(99)00845-5[Crossref]
  • [25] H. Kobayashi, M. Takahashi, O. Maida, A. Asano, T. Kubota, J. Ivančo, A. Nakajima and K. Akimoto: “Semiconductor surface and interface passivation by cyanide treatment”, Appl. Surf. Sci. Vol. 235, (2004), pp. 279–292. http://dx.doi.org/10.1016/j.apsusc.2004.05.101[Crossref]
  • [26] T.J. Mego: “Improved feedback charge method for quasistatic CV measurements in semiconductors”, Rev. Sci. Instrum., Vol. 57, (1986), pp. 2798–2805. http://dx.doi.org/10.1063/1.1139046[Crossref]
  • [27] I. Thurzo and M. Grendel: “On the relationship between the feedback charge method, charge transient spectroscopy and C-V measurements of semiconductors and insulators”, Meas. Sci. Technol., Vol. 3, (1992), pp. 726–731. http://dx.doi.org/10.1088/0957-0233/3/8/008[Crossref]
  • [28] I. Thurzo, K. Gmucová, J. Orlický and J. Pavlásek: “Introduction to a kinetics-sensitive double-step voltcoulometry”, Rev. Scient. Instrum., Vol. 70, (1999), pp. 3723–3734. http://dx.doi.org/10.1063/1.1149984[Crossref]
  • [29] J.F. Dewald: “A Theory of the Kinetics of Formation of Anode Films at High Fields”, J. Electrochem. Soc., Vol. 102, (1955), pp. 1–6. http://dx.doi.org/10.1149/1.2429983[Crossref]
  • [30] P. Friedel, S. Gourrier and T. Dimitriou: “Kinetics of GaAs Plasma Anodization”, J. Electrochem. Soc., Vol. 128, (1981), pp. 1857–1861. http://dx.doi.org/10.1149/1.2127751[Crossref]
  • [31] S. Taylor, W. Eccleston and K.J. Barlow: “Theory for the plasma anodization of silicon under constant voltage and constant current conditions”, J. Appl. Phys., Vol. 64, (1988), pp. 6515–6522. http://dx.doi.org/10.1063/1.342076[Crossref]
  • [32] E. Pinčík, H. Kobayashi, R. Brunner, R. Hajossy, H. Glesková, M. Takahashi and M. Mikula: “Very Thin and Ultrathin Oxide/a-Si:H Structures and Polycrystalline-Si MOS Type of Solar Cells”, In: Proc. of SILICON’ 2006, 10th Scientific and Business Conference, Rožnov pod Radhoštěm (Czech Republic), 2006, TECON Scientific Ltd., Rožnov pod Radhoštěm, 2006, pp. 342–364.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-007-0019-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.