Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2007 | 5 | 3 | 405-415

Article title

Influence of alcohol on mechanical and electrical properties of thin organic films


Title variants

Languages of publication



Stability of organic materials properties is essential for further applications and was intensely investigated in last few decades. The aim of this study is to detect the structural changes of dipalmitoyl-phosphatidylcholine (DPPC) monolayer as a model system of organic material under influence of alcohols solutions. As subphases of monolayers (Langmuir films), pure water, ethanol and methanol solutions were used. For detection of changes in charge states of the molecules as well as relation with structural and conformational changes, a contactless method employing Maxwell’s displacement currents (MDC) was used. In DPPC monolayer on the subphase of methanol-water, a gradual absorption of methanol molecules into the layer can appear. In DPPC monolayer on the subphase of ethanol-water adsorption of ethanol molecules on the layer can be observed. Influence of alcohols results in a significant change of mechanical and electrical properties as well as in the stability of thin films.










Physical description


1 - 9 - 2007
12 - 4 - 2007


  • Institute of pathology, School of Medicine, Comenius University, 811 08, Bratislava, Slovakia
  • Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19, Bratislava, Slovakia


  • [1] M. Iwamoto and Y. Majima: “Investigation Of A Fatty-Acid Monolayer At The Air-Water-Interface Using A Current-Measuring Technique”, Thin Solid Films, Vol. 178, (1989), pp. 67–72. http://dx.doi.org/10.1016/0040-6090(89)90287-3[Crossref]
  • [2] M. Iwamoto and Y. Majima: “Investigation of the dynamic behavior of fatty acid monolayers at the air-water interface using a displacement current-measuring technique coupled with the Langmuir-film technique”, J. Chem. Phys., Vol. 94, (1991), pp. 5135–5142. http://dx.doi.org/10.1063/1.460551[Crossref]
  • [3] M. Weis, M. Kopani, P. Michalka, Cs. Biro, P. Celec, L. Danisovic and J. Jakubovsky: “Conformation study of the membrane models by the Maxwell displacement current technique and oxidative stress”, J. Biochem. Bioph. Meth., Vol. 65, (2005), pp. 81–87. http://dx.doi.org/10.1016/j.jbbm.2005.10.005[Crossref]
  • [4] D. Barančok, J. Cirák, P. Tomčík and J. Vajda: “Contactless detection of the orientation of molecules in an organic monolayer”, Phys. Status Solidi A, Vol. 169, (1998), pp. 267–273. http://dx.doi.org/10.1002/(SICI)1521-396X(199810)169:2<267::AID-PSSA267>3.0.CO;2-B[Crossref]
  • [5] A.V. Zakharov and M. Iwamoto: “Monolayers at the air-water interface: Maxwell displacement current and optical second-harmonic generation studies and theoretical treatment”, Phys. Rev. E, Vol. 66, (2002), pp. 0616051–0616057. http://dx.doi.org/10.1103/PhysRevE.66.061605[Crossref]
  • [6] K. Sulaiman, W. Haliza, W.H.A. Majid and M.R. Muhamad: “Molecular organization of phospholipid monolayers on the water surface by Maxwell displacement current measurement”, Appl. Surf. Sci., Vol. 252, (2006), pp. 2875–2881. http://dx.doi.org/10.1016/j.apsusc.2005.04.030[Crossref]
  • [7] J. Cirák, D. Barančok, P. Tomčík and J. Vajda: “Displacement current across a monomolecular layer at the air/water interface”, Mater. Sci. Eng., Vol. C, 8-9, (1999), pp. 13–16. [Crossref]
  • [8] M. Weis, M. Kopáni, J. Jakubovský and Ľ. Danihel: “Ethanol and methanol induced changes in phospholipid monolayer”, Appl. Surf. Sci., doi:10.1016/j.apsusc.2006.04.053 [Crossref]
  • [9] V.M. Kaganer, H. Möhwald and P. Dutta: “Structure and phase transitions in Langmuir monolayers”, Rev. Mod. Phys., Vol. 71, (1999), pp. 779–816. http://dx.doi.org/10.1103/RevModPhys.71.779[Crossref]
  • [10] V. Vogel and D. Möbius: “Local Surface-Potentials And Electric-Dipole Moments Of Lipid Monolayers - Contributions Of The Water Lipid And The Lipid Air Interfaces”, J. Colloid Interf. Sci., Vol. 126, (1988), pp. 408–420. http://dx.doi.org/10.1016/0021-9797(88)90140-3[Crossref]
  • [11] A.F.M. Ward and L. Tordai: “Time-Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time-Effects”, J. Chem. Phys., Vol. 14, (1946), p. 453. http://dx.doi.org/10.1063/1.1724167[Crossref]
  • [12] V.B. Fainerman, A.V. Makievski and R. Miller: “The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theorye”, Colloid. Surf. A, Vol. 87, (1994), pp. 61–75. http://dx.doi.org/10.1016/0927-7757(94)02747-1[Crossref]
  • [13] R. Miller, R. Wüstneck, J. Krägel and G. Kretzschmar: “Dilational and shear rheology of adsorption layers at liquid interfaces”, Colloid. Surf. A, Vol. 111, (1996), pp. 75–118 http://dx.doi.org/10.1016/0927-7757(95)03492-7[Crossref]
  • [14] A. Cruz, L. Vázquez, M. Vélez and J. Pérez-Gil: “Effect of Pulmonary Surfactant Protein SP-B on the Micro-and Nanostructure of Phospholipid Films”, Biophys. J., Vol. 86, (2004), pp. 308–320.
  • [15] Y. Yamamoto, K. Taga, T. Yoshida, H. Kamaya and I. Ueda: “Temperature dependence of thermodynamic activity in volatile anesthetics: Correlation between anesthetic potency and activity”, J. Colloid Interf. Sci., Vol. 301, (2006), pp. 488–492. http://dx.doi.org/10.1016/j.jcis.2006.05.030[Crossref]
  • [16] L. Foret and A. Würger: “Discontinuous bending rigidity and cosurfactant adsorption of amphiphile layers”, Phys. Rev. Lett., Vol. 86, (2001), pp. 5930–5933. http://dx.doi.org/10.1103/PhysRevLett.86.5930[Crossref]
  • [17] H. Nakahara, S. Nakamura, T. Hiranita, H. Kawasaki, S. Lee, G. Sugihara and O. Shibata: “Mode of interaction of amphiphilic alpha-helical peptide with phosphatidylcholines at the air-water interface”, Langmuir, Vol. 22, (2006), pp. 1182–1192. http://dx.doi.org/10.1021/la0524925[Crossref]
  • [18] A. Takahara, S. Ge, K. Kojio and T. Kajiyama: “In situ atomic force microscopic observation of albumin adsorption onto phase-separated organosilane monolayer surface”, J. Biomater. Sci.-Polym. E., Vol. 11, (2000), pp. 111–120. http://dx.doi.org/10.1163/156856200743535[Crossref]
  • [19] I. Ohtsuka and S. Yokoyama: “Penetration of bovine serum albumin into dipalmitoylphosphatidylglycerol monolayers: Direct observation by atomic force microscopy”, Chem. Pharm. Bull., Vol. 53, (2005), pp. 42–47. http://dx.doi.org/10.1248/cpb.53.42[Crossref]
  • [20] W. Caetano, M. Ferreira, O. N. Oliveira Jr and R. Itri: “Enhanced stabilization of aerosol-OT surfactant monolayer upon interaction with small amounts of bovine serum albumin at the air-water interface”, Colloid. Surf. B-Biointerfaces, Vol. 38, (2004), pp. 21–27. http://dx.doi.org/10.1016/j.colsurfb.2004.08.005[Crossref]
  • [21] B.G. Vertessy and T.L. Steck: “Elasticity Of The Human Red-Cell Membrane Skeleton - Effects Of Temperature And Denaturants”, Biophys. J., Vol. 55, (1989), pp. 255–262. http://dx.doi.org/10.1016/S0006-3495(89)82800-0[Crossref]
  • [22] H.V. Ly and M.L. Longo: “The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers”, Biophys. J., Vol. 87, (2004), pp. 1013–1033. http://dx.doi.org/10.1529/biophysj.103.034280[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.