PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2007 | 5 | 2 | 188-200
Article title

Evaluation of the inelastic mean free path (IMFP) of electrons in polyaniline and polyacetylene samples obtained from elastic peak electron spectroscopy (EPES)

Content
Title variants
Languages of publication
EN
Abstracts
EN
The inelastic mean free path (IMFP) of electrons was determined experimentally for selected polyaniline and polyacetylene samples with Ag and Ni references using elastic peak electron spectroscopy (EPES). The surface composition was determined by XPS and density by helium pycnometry. The high resolution hemispherical ESA-31 and ADES-400 spectrometers were used for measurements in the energy range E = 0.5–3.0 keV and E =0.4 − 1.6 keV, respectively. The integrated elastic peak intensity ratios for sample and reference were calculated using the Monte Carlo (MC) algorithm based on the electron elastic scattering cross-sections database NIST SRD64 version 3.1 and applying TPP-2M IMFPs for polymers. Surface excitation parameters (SEP) and material parameters (ach) for polymers were determined, using the model of Chen, from comparison of measured and MC calculated elastic peak intensity ratios. These corrections proved to be efficient in decreasing the percentage deviations between the obtained IMFPs and the TPP-2M formula IMFPs. The elastic peak of hydrogen was observed in the EPES spectra of polymers. The experimental contribution of the hydrogen to the total elastic peak was 0.58%, while this value obtained from the MC simulations was 1.98%.
Keywords
Publisher

Journal
Year
Volume
5
Issue
2
Pages
188-200
Physical description
Dates
published
1 - 6 - 2007
online
1 - 6 - 2007
Contributors
  • Research Institute for Technical Physics and Materials Sciences HAS, H-1525, Budapest, Hungary
  • Research Institute for Technical Physics and Materials Sciences HAS, H-1525, Budapest, Hungary
author
  • Research Institute for Technical Physics and Materials Sciences HAS, H-1525, Budapest, Hungary
  • Research Institute for Technical Physics and Materials Sciences HAS, H-1525, Budapest, Hungary
author
  • Institute of Physical Chemistry PAS, 01-224, Warszawa, Poland, blo@ichf.edu.pl
  • Institute of Physical Chemistry PAS, 01-224, Warszawa, Poland
  • Institute of Physical Chemistry PAS, 01-224, Warszawa, Poland
author
  • Institute of Nuclear Physics HAS, H-4001, Debrecen, Hungary
author
  • Institute of Nuclear Physics HAS, H-4001, Debrecen, Hungary
References
  • [1] C.J. Powell and A. Jablonski: “Evaluation of Calculated and Measured Electron Inelastic Mean Free Paths Near Solid Surfaces”, J. Phys. Chem. Ref. Data, Vol. 28, (1999), pp. 19–62. http://dx.doi.org/10.1063/1.556035[Crossref]
  • [2] B. Lesiak, A. Kosinski, A. Jablonski, L. Kövér, J. Tóth, D. Varga and I. Cserny: “Determination of the inelastic mean free path of electrons in polyaniline samples by elastic peak electron spectroscopy”, Surf. Interface Anal., Vol. 29, (2000), pp. 614–623. http://dx.doi.org/10.1002/1096-9918(200009)29:9<614::AID-SIA907>3.0.CO;2-J[Crossref]
  • [3] B. Lesiak, A. Kosinski, M. Krawczyk, L. Zommer, A. Jablonski, J. Zemek, P. Jiricek, L. Kövér, J. Tóth, D. Varga and I. Cserny: “Determination of the electron inelastic mean free path in polyacetylene by elastic peak electron spectroscopy using different spectrometers”, Appl. Surf. Sci., Vol. 144, (1999), pp. 168–172. http://dx.doi.org/10.1016/S0169-4332(98)00790-9[Crossref]
  • [4] G. Gergely: “Elastic backscattering of electrons: determination of physical parameters of electron transport processes by elastic peak electron spectroscopy”, Prog. Surf. Sci., Vol. 71, (2002), pp. 31–88. http://dx.doi.org/10.1016/S0079-6816(02)00019-9[Crossref]
  • [5] A. Jablonski and P. Jiricek: “Dependence of experimentally determined inelastic mean free paths of electrons on the measurement geometry”, Surf. Sci., Vol. 412-413, (1998), pp. 42–54. http://dx.doi.org/10.1016/S0039-6028(98)00367-7[Crossref]
  • [6] NIST Electron Elastic-Scattering Cross-Section Database, Standard Reference Data Program, SRD 64, National Institute of Standards and Technology, Gaithersburg MD, 1996, v. 1.0.
  • [7] W.H. Gries: “A Universal Predictive Equation for the Inelastic Mean Free Path-lengths of X-ray Photoelectrons and Auger Electrons”, Surf. Interface Anal., Vol. 24, (1996), pp. 38–50. http://dx.doi.org/10.1002/(SICI)1096-9918(199601)24:1<38::AID-SIA84>3.0.CO;2-H[Crossref]
  • [8] S. Tanuma, C.J. Powell and D.R. Penn: “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range”, Surf. Interface Anal., Vol. 21, (1994), pp. 165–176. http://dx.doi.org/10.1002/sia.740210302[WoS][Crossref]
  • [9] P.J. Cumpson: “Estimation of inelastic mean free paths for polymers and other organic materials: use of quantitative structure-property relationships”, Surf. Interface Anal., Vol. 31, (2001), pp. 23–34. http://dx.doi.org/10.1002/sia.948[Crossref]
  • [10] G. Gergely, M. Menyhard, A. Sulyok, G.T. Orosz, B. Lesiak, A. Jablonski, J. Tóth and D. Varga: “Surface excitation of selected conducting polymers studied by elastic peak electron spectroscopy (EPES) and reflection electron energy loss spectroscopy (REELS)”, Surf. Interface Anal., Vol. 36, (2004), pp. 1056–1059. http://dx.doi.org/10.1002/sia.1836[Crossref]
  • [11] A. Jablonski: “Determination of the electron inelastic mean free path in solids from the elastic electron backscattering intensity”, Surf. Interface Anal., Vol. 37, (2005), pp. 1035–1044. http://dx.doi.org/10.1002/sia.2119[Crossref]
  • [12] A. Jablonski, F. Salvat and C.J. Powell: NIST Electron Elastic-Scattering Cross-Section Database, Standard Reference Data Program, SRD 64, National Institute of Standards and Technology, Gaithersburg MD, 2003, v. 3.1, http://www.nist.gov/srd/nist64.htm url.
  • [13] C.M. Kwei, C.Y. Wang and C.J. Tang: “Surface excitation parameters of low-energy electrons crossing solid surfaces”, Surf. Interface Anal., Vol. 26, (1998), pp. 682–688. http://dx.doi.org/10.1002/(SICI)1096-9918(199808)26:9<682::AID-SIA415>3.0.CO;2-7[Crossref]
  • [14] Y.F. Chen: “Surface effects on angular distributions in X-ray-photoelectron spectroscopy”, Surf. Sci., Vol. 519, (2002), pp. 115–124. http://dx.doi.org/10.1016/S0039-6028(02)02206-9[Crossref]
  • [15] W. S. M. Werner, W. Smekal, C. Tomastik and H. Störi: “Surface excitation probability of medium energy electrons in metals and semiconductors”, Surf. Sci., Vol. 486, (2001), pp. L461–L466. http://dx.doi.org/10.1016/S0039-6028(01)01091-3[Crossref]
  • [16] S. Tanuma, S. Ichimura and K. Goto: “Estimation of surface excitation correction factor for 200–5000 eV in Ni from absolute elastic scattering electron spectroscopy”, Surf. Interface Anal., Vol. 30, (2000), pp. 212–216. http://dx.doi.org/10.1002/1096-9918(200008)30:1<212::AID-SIA793>3.0.CO;2-N[Crossref]
  • [17] G. Gergely, M. Menyhard, S. Gurban, J. Tóth and D. Varga: “Experimental measurements of the surface excitation parameters of Cu, Au, Ni, Ag, Ge and Pd based on Si and other reference standard materials”, Surf. Interface Anal., Vol. 36, (2004), pp. 1098–1101. http://dx.doi.org/10.1002/sia.1849[Crossref]
  • [18] T. Nagatomi: “Absolute determination of inelastic mean-free paths and surface excitation parameters by absolute reflection electron energy loss spectrum analysis”, App. Phys. Lett., Vol. 87, (2005), pp. 224107–224109. http://dx.doi.org/10.1063/1.2135211[Crossref]
  • [19] K. Salma, Z.J. Ding, H.M. Li and Z.M. Zhang: “Surface excitation probabilities in surface electron spectroscopies”, Surf. Sci., Vol. 600, (2006), pp. 1526–1539. http://dx.doi.org/10.1016/j.susc.2006.02.008[Crossref]
  • [20] C.M. Kwei, Y.C. Li and C.J. Tung: “Angular and energy dependences of the surface excitation parameter for electrons crossing a solid surface”, Surf. Sci., Vol. 600, (2006), pp. 3690–3694. http://dx.doi.org/10.1016/j.susc.2006.01.071[Crossref][WoS]
  • [21] H. Boersch, R. Wolter and H. Schoenebeck: “Elastische energieverluste kristallgestreuter elektronen”, Z. Physik, Vol. 199, (1967), pp. 124–134. http://dx.doi.org/10.1007/BF01326021[Crossref]
  • [22] D. Laser and M.P. Seah: “Reassessment of energy transfers in the quasi elastic scattering of 250–3000 eV electrons at surfaces”, Phys. Rev. B, Vol. 47, (1993), pp. 9836–9839. http://dx.doi.org/10.1103/PhysRevB.47.9836[Crossref]
  • [23] D. Varga, K. Tőkési, Z. Berényi, J. Tóth and L. Kövér: “Observation of the hydrogen peak in the spectra of electrons backscattered from polyethylene”, Surf. Interface Anal., Vol. 38, (2006), pp. 544–547. http://dx.doi.org/10.1002/sia.2231[Crossref]
  • [24] G. T. Orosz, A. Sulyok, G. Gergely, S. Gurbán and M. Menyhard: “Calculation of the surface excitation parameter for Si and Ge from measured electron backscattered spectra by means of a Monte-Carlo simulation”, Microsc. Microanal., Vol. 9, (2003), pp. 343–348. http://dx.doi.org/10.1017/S1431927603030241[Crossref]
  • [25] A. Jablonski and C.J. Powell: “Information depth for elastic-peak electron spectroscopy”, Surf. Sci., Vol. 551, (2004), pp. 106–124. http://dx.doi.org/10.1016/j.susc.2003.12.036[Crossref]
  • [26] A. Jablonski, I.S. Tilinin and C.J. Powell: “Mean escape depth of signal photoelectrons from amorphous and polycrystalline solids”, Phys. Rev. B, Vol. 54, (1996), pp. 10927–10937. http://dx.doi.org/10.1103/PhysRevB.54.10927[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-007-0012-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.