Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2007 | 5 | 2 | 207-220

Article title

A molecular dynamics study on iridium


Title variants

Languages of publication



In this study, molecular dynamics simulations are performed by using a modified form of Morse potential function in the framework of the Embedded Atom Method (EAM). Temperature-and pressure-dependent behaviours of bulk modulus, second-order elastic constants (SOEC), and the linear-thermal expansion coefficient is calculated and compared with the available experimental data. The melting temperature is estimated from 3 different plots. The obtained results are in agreement with the available experimental findings for iridium.










Physical description


1 - 6 - 2007
1 - 6 - 2007


  • Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500, Ankara, Turkey
  • Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500, Ankara, Turkey
  • Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500, Ankara, Turkey
  • Department of Physics, Faculty of Arts and Sciences, Firat University, 23119, Elazig, Turkey
  • Department of Physics, Faculty of Arts and Sciences, Firat University, 23119, Elazig, Turkey


  • [1] M.J. Cawkwell, D. Nguyen-Manh, C. Woodward, D.G. Pettifor and V. Vitek: “Origin of Brittle Cleavage in Iridium”, Science, Vol. 309, (2005), pp. 1059–1062. http://dx.doi.org/10.1126/science.1114704[Crossref]
  • [2] P. Panfilov, A. Yermakov, V. Dmitriev and N. Timofeev: “The plastic fallow of Iridium”, Platinum Metals Rev., Vol. 35, (1991), pp. 196–200.
  • [3] A. Yermakov, P. Panfilov and R. Adamesku: “The main features of plastic deformation of iridium single crystals”, J. Mat. Sci. Letts., Vol. 9, (1990), pp. 696–697. http://dx.doi.org/10.1007/BF00721807[Crossref]
  • [4] R. Heid, K.P. Bohnen, K. Felix, K.M. Ho and W. Reichardt: “Ab initio phonon dynamics of iridium”, J. Phys.: Condens. Matter., Vol. 10, (1998), pp. 7967–7973. http://dx.doi.org/10.1088/0953-8984/10/36/007[Crossref]
  • [5] Y. Cerenius and L. Dubrovinsky: “Compressibility meausurements on iridium”, J. Alloys & Comp., Vol. 306, (2000), pp. 26–29. http://dx.doi.org/10.1016/S0925-8388(00)00767-2[Crossref]
  • [6] Yu N. Gornostyrev, M.I. Katsnelson, N.I. Medvedeva, O.N. Mryasov, A.J. Freeman and A.V. Trefilov: “Peculiarities of defect structure and mechanical properties of iridium: Results of ab initio electronic structure calculations”, Phys. Rev. B, Vol. 62, (2000), pp. 7802–7808. http://dx.doi.org/10.1103/PhysRevB.62.7802[Crossref]
  • [7] J. Merker, D. Lupton, M. Töpfer and H. Knake: “High temperature machanical properties of the platinum group metals”, Platinium Metals Rev., Vol. 45(2), (2001), pp. 74–82.
  • [8] H.D. Hochheimer, R.D. Etters and I.I. Spain: Frontiers of High Pressure Research, H.D. Hochheimer and R.D. Etters (Eds.), Plenum Press, New York, 1991.
  • [9] A.S. Ivanov, M.I. Katsnelson, A.G. Mikhin, Yu N. Osetskii, A.Yu. Rumyantsev, A.V. Trefilov, Yu F. Shamanaev and L.I. Yakovenkova: “Photon Spectra, Interatomic Interaction Potentials And Simulation Of Lattice-Defects In Iridium And Rhodium”, Phil. Mag. B, Vol. 69, (1994), pp. 1183–1195. [Crossref]
  • [10] V.N. Antonov, V.Yu Milman, V.V. Nemoshkalenko and A.V. Zhalko-Titarenko: “Lattice dynamics of fcc transition metals: A pseudopotential approach”, Z. Phys. B, Vol. 79, (1990), pp. 223–232. http://dx.doi.org/10.1007/BF01406588[Crossref]
  • [11] J.K. Baria: “Static and vibrational properties of transition metals”, Czech. J. Phys., Vol. 52, (2002), pp. 969–989; “Temperature dependent lattice machanical properties of some fcc transition metals”, Chinese J. Phys., Vol. 42, (2004), pp. 287–306. http://dx.doi.org/10.1023/A:1019869606156[Crossref]
  • [12] N. Singh: “Theoretical study of structural energy, phonon spectra, and elastic constants of Rh and Ir”, Pramana J. Phys., Vol. 52, (1999), pp. 511–523. [Crossref]
  • [13] M.J. Mehl and L.L. Boyer: “Calculation of energy barriers for physically allowed lattice invariant strains in aluminum and iridium”, Phys. Rev. B, Vol. 43, (1991), pp. 9498–9502. http://dx.doi.org/10.1103/PhysRevB.43.9498[Crossref]
  • [14] M.J. Mehl and D.A. Papaconstantopoulos: “Applications of a tight-binding totalenergy mehod for transition and noble metals: Elastic constants, vacancies, and surfaces of the monatomic metals”, Phys. Rev. B, Vol. 54, (1996), pp. 4519–4530. http://dx.doi.org/10.1103/PhysRevB.54.4519[Crossref]
  • [15] J. Cai, F. Wang, C. Lu and Y.Y. Wang: “Structure and stacking-fault energy in metals Al, Pd, Pt, Ir, and Rh”, Phys. Rev. B, Vol. 69, (2004), pp. 224104–224108. http://dx.doi.org/10.1103/PhysRevB.69.224104[Crossref]
  • [16] Y.P. Varshni: “Temperature dependence of the elastic constants”, Phys. Rev. B, Vol. 2, (1970), pp. 3947–3952. http://dx.doi.org/10.1103/PhysRevB.2.3952[Crossref]
  • [17] M. Dacorogna, J. Ashkenazi and M. Peter: “Ab initio calculation of the tetragonal shear moduli of the cubic transition”, Phys. Rev. B, Vol. 26, (1982), pp. 1527–1537. http://dx.doi.org/10.1103/PhysRevB.26.1527[Crossref]
  • [18] L. Gomez, A. Dobry and H.T. Diep: “Melting properties of fcc metals using a tight-binding potential”, Phys. Rev. B, Vol. 55, (1997), pp. 6265–6271. http://dx.doi.org/10.1103/PhysRevB.55.6265[Crossref]
  • [19] G.M. Buhuiyan, M. Silbert and M.J. Stott: “Structure and thermodynamic properties of liquid transition metals: An embedded-atom method approach”, Phys. Rev. B, Vol. 53, (1996), pp. 636–645. http://dx.doi.org/10.1103/PhysRevB.53.636[Crossref]
  • [20] M.I. Baskes: “Modified embedded-atom potentials for cubic materials and impurities”, Phys. Rev. B, Vol. 46, (1992), pp. 2727–2742. http://dx.doi.org/10.1103/PhysRevB.46.2727[Crossref]
  • [21] T. Çaɡ;in, G. Dereli, M. Uludogan and M. Tomak: “Thermal and mechanical properties of some fcc transition metals”, Phys. Rev. B, Vol. 59, (1999), pp. 3468–3473. http://dx.doi.org/10.1103/PhysRevB.59.3468[Crossref]
  • [22] M.J. Mehl, A. Aguayo and L.L. Boyer: “Absence of the metastable states in strained monoatomic cubic crsytals”, Phys. Rev. B, Vol. 70, (2004), pp. 14105–14112. http://dx.doi.org/10.1103/PhysRevB.70.014105[Crossref]
  • [23] P. Söderlind, O. Eriksson, J.M. Wills and A.M. Boring: “Theory of elastic constants of cubic transition metals and alloys”, Phys. Rev. B, Vol. 48, (1993), pp. 5844–5851. http://dx.doi.org/10.1103/PhysRevB.48.5844[Crossref]
  • [24] M.S. Daw and M.I. Baskes: “Semiemprical quantum mechanical calculation of hydrogen embrittlement in metals”, Phys. Rev. B, Vol. 50(17), (1983), pp. 1285–1288. http://dx.doi.org/10.1103/PhysRevLett.50.1285[Crossref]
  • [25] M.S. Daw and M.I. Baskes: “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals”, Phys. Rev. B, Vol. 29(12), (1984), pp. 6443–6453. http://dx.doi.org/10.1103/PhysRevB.29.6443[Crossref]
  • [26] Cai and Y.Y. Ye: “Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys”, Phys. Rev. B, Vol. 54(12), (1996), pp. 8398–8410. http://dx.doi.org/10.1103/PhysRevB.54.8398[Crossref]
  • [27] Y.O. Çiftci and K. Çolakođlu: “Embedded atom method for theoretical strenght and stability of some fcc Metals”, Acta Phys. Pol. A, Vol. 100(4), (2001), pp. 539–544.
  • [28] S. Kazanc, Y.O. Ciftci, K. Colakoglu and S. Ozgen: “Temperature and pressure dependence of the some elastic and lattice dynamical propertes of copper: a molecular dynamics study”, Physica B, Vol. 381(1-2), (2006), pp. 96–102. http://dx.doi.org/10.1016/j.physb.2005.12.259[Crossref]
  • [29] Y.O. Ciftci, K. Colakoglu, S. Kazanc and S. Ozgen: “The effect of pressure on the elastic constants of Cu, Ag and Au: a molecular dynamics study”, Cent. Eur. J. Phys., Vol. 4(4), (2006), pp. 472–480. http://dx.doi.org/10.2478/s11534-006-0025-y[Crossref]
  • [30] C. Kittel: Introduction to Solid State Physics, Wiley, New York, 1986.
  • [31] R.O. Simmons and H. Wang: Single Crystal Elastic Constants and Calculate Aggregate Properties: A Handbook, MIT Press, Cambridge, 1991.
  • [32] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedena and A.K. Niesen: Cohesion in Metals, North Holland, Amesterdam, Vol. 1, 1988.
  • [33] G.K. White and A.T. Pawlowicz: J. Low Temp. Phys., 2, Vol. 631, (1970). [Crossref]
  • [34] Y.S. Touloukian and E.H. Buyco: Specific Heat: Metallic Elements and Alloys, IFI/Plenum, New York, 1970.
  • [35] J.H. Rose, J.R. Smith, F. Guinea and J. Ferrante: “Universal features of the equation of state of metals”, Phys. Rev. B., Vol. 29(6), (1984), pp. 2963–2969. http://dx.doi.org/10.1103/PhysRevB.29.2963[Crossref]
  • [36] M.S. Daw and R.D. Hatcher: “Application of the embedded atom method to phonons in transition metals”, Solid State Commun., Vol. 56, (1985), pp. 697–699. http://dx.doi.org/10.1016/0038-1098(85)90781-1[Crossref]
  • [37] M. Parrinello and A. Rahman: “Crystal structure and pair potential: a moleculardynamics study”, Phys. Rev. Lett., Vol. 45(11), (1980), pp. 1196–1199. http://dx.doi.org/10.1103/PhysRevLett.45.1196[Crossref]
  • [38] M. Parrinello and A. Rahman: “Polymorphic transition in single crystals: a new molecular dynamics method”, J. App. Phys., Vol. 52(12), (1981), pp. 7182–7190. http://dx.doi.org/10.1063/1.328693[Crossref]
  • [39] L. Verlet: “Computer experiments on classical fluids: I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., Vol. 159, (1967), pp. 98–103. http://dx.doi.org/10.1103/PhysRev.159.98[Crossref]
  • [40] M. Karimi, G. Stapay, T. Kaplan and M. Mostoller: Modelling Simul. Mater. Sci. Eng., Vol. 5, (1997), p. 337. http://dx.doi.org/10.1088/0965-0393/5/4/003[Crossref]
  • [41] Y. Gurler and S. Ozgen: “The calculation of P-T diagrams of Ni and Al using molecular dynamics simulation”, Matt. Let., Vol. 57, (2003), pp. 4336–4343. http://dx.doi.org/10.1016/S0167-577X(03)00324-0[Crossref]
  • [42] S.K. Nayak, S.N. Khanna, B.K. Rao and P. Jena: “Thermodynamics of small nickel clusters”, J. Phys. Condens. Matter, Vol. 10, (1988), pp. 10853–10862. http://dx.doi.org/10.1088/0953-8984/10/48/008[Crossref]
  • [43] S.O. Kart, M. Tomak, M. Uludogan and T. Cagin: J. Non-Cryst. Solids, Vol. 337(2), (2004), p. 101. http://dx.doi.org/10.1016/j.jnoncrysol.2004.03.121[Crossref]
  • [44] J.M. Holender: “Molecular-dynamics studies of te thermal properties of the solid and liquid fcc metals Ag, Au, Cu and Ni using many-body interactions”, Phys. Rev. B, Vol. 41, (1990), pp. 8054–8061. http://dx.doi.org/10.1103/PhysRevB.41.8054[Crossref]
  • [45] E. Ahmed, J.I. Akhter and M. Ahmad: “Molecular dynamics study of thermal properties of noble metals”, Comp. Mat. Sci., Vol. 31, (2004), pp. 309–316. [Crossref]
  • [46] L. Wang, X. Bian and J. Zhang: “Structural simulation of amorphization and crystallization in liquid metals”, J. Phys. B: At. Mol. Opt. Phys., Vol. 35, (2002), pp. 3575–3582. http://dx.doi.org/10.1088/0953-4075/35/16/315[Crossref]
  • [47] T. Çaɡin and J.R. Ray: “Fundamental treatment of molecular-dynamics ensembles”, Phys. Rev. A, Vol. 37, (1988), pp. 247–251; “Elastic constants of sodium from molecular dynamics”, Phys. Rev. B, Vol. 37, (1988), pp. 699–705; “Third-order elastic constants from molecular dynamics: Theory and example calculation”, Phys. Rev B, Vol. 38, (1988), pp. 7940–7946; T. Çaɡin and B.M. Pettitt: “Elastic constants of nickel: variations with respect to temperature and pressure”, Phys. Rev. B, Vol. 39, (1989), pp. 12484–12491; T. Çaɡin and J.R. Ray: “Isothermal molecular-dynamics ensembles”, Phys. Rev. A, Vol. 37, (1988), pp. 4510–4513. http://dx.doi.org/10.1103/PhysRevA.37.247[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.