Preferences help
enabled [disable] Abstract
Number of results
2007 | 5 | 2 | 177-187
Article title

Creep strain recovery of Fe-Ni-B amorphous metallic ribbon

Title variants
Languages of publication
Creep strain recovery and structural relaxation of the amorphous metallic glass Fe40Ni41B19 after longtime loading at different annealing temperatures below the glass transition temperature have been studied using anisothermal differential scanning calorimetry (DSC) and dilatometry (TMA). It has been demonstrated that structural relaxation effects depend on the stress-annealing temperature of the amorphous ribbon. The structural relaxation states of the amorphous ribbon annealed at different temperatures under and without applied stress have been compared. The activation energy spectra were calculated from the anisothermal dilatometric measurements using the modern method based on the Fourier transformation technique. The influence of the annealing temperature on the shape of creep strain recovery spectra has been analyzed.
Physical description
1 - 6 - 2007
27 - 2 - 2007
  • [1] T. Egami: “Magnetic amorphous alloys: physics and technological applications”, Rep. Prog. Phys., Vol. 47, (1984), pp. 1601–1725.[Crossref]
  • [2] J.M. Borrego, C.F. Conde and A. Conde: “Structural relaxation processes in FeSiB-Cu(Nb, X), X = Mo, V, Zr, Nb glassy alloys”, Mat. Sci. Eng. A, Vol. 304-306, (2001), pp. 491–494.[Crossref]
  • [3] G.P. Tiwari, R.V. Ramanujan, M.R. Gonal, R. Prasad, P. Raj, B.P. Badguzar and G.L. Goswami: “Structural relaxation in metallic glasses”, Mat. Sci. Eng. A, Vol. 304-306, (2001), pp. 499–504.[Crossref]
  • [4] O. Haruyama, M. Tando, H. M. Kimura, N. Nishiyama and A. Inoue: “Structural relaxation in Pd-Cu-Ni-P metallic glasses”, Mat. Sci. Eng. A, Vol. 375-377, (2004), pp. 292–296.[Crossref]
  • [5] J. Ivkov, N. Radić, A. Tonejc and T. Car: “Structural relaxation of Al-W amorphous thin films”, J. Non-Cryst. Solids, Vol. 319, (2003), pp. 232–240.[Crossref]
  • [6] L.K. Varga, Z. Gercsi, G. Kovács, A. Kákay and F. Mazaleyrat: “Stress-induced magnetic anisotropy in nanocrystalline alloys”, J. Magn. and Magn. Mater., Vol. 254–255, (2003), pp. 477–479.[Crossref]
  • [7] P. Vojtaník, R. Andrejco and R. Varga: “Evidence of B-and Si-type magnetic relaxations in Co-based amorphous alloys”, Phys. Rev. B, Vol. 70, (2004), art. 052407.
  • [8] L. Kraus and G. Vlasák: “Creep-induced magnetic anisotropy and anelastic strain of an iron-rich amorphous alloy”, Mat. Sci. Eng. B, Vol. 15, (1992), pp. 121–125.[Crossref]
  • [9] L. Ceniga and F. Kováč: “Influence of annealing and hydrogenation-dehydrogenation processes on internal stresses and barkhausen noise of Fe83B17 amorphous alloy”, J. Mat. Sci., Vol. 36, (2001), pp. 4125–4129.[Crossref]
  • [10] V.Z. Bengus, E.D. Tabachnikova, S.E. Shumilin, Y.I. Golovin, M.V. Makarov, A.A. Shibkov, J. Miškuf, K. Csach and V. Ocelík: “Some Pecularities of Ductile Shear Failure of Amorphous Alloy Ribbons”, Int. J. Rapid Solidification, Vol. 8, (1993), pp. 21–31.
  • [11] H. Kronmüller and W. Fernengel: “The role of internal stresses in amorphous ferromagnetic alloys”, Phys. Stat. Sol. A, Vol. 64(2), (1981), pp. 593–602.[Crossref]
  • [12] A.S. Bakai: Glassy Metals III, H. Beck and H.J. Güntherodt (Eds.), Springer-Verlag, Berlin Heidelberg, 1994, p. 209.
  • [13] D. Srolovitz, K. Maeda, V. Vitek and T. Egami: “Structural defects in amorphous solids”, Phil. Mag. A, Vol. 44(4), (1981), pp. 847–866. [Crossref]
  • [14] K. Russew, Hey, J. Sietma and A. van den Beukel: “Viscous flow of amorphous Fe40Ni40Si6B14 studied by direct creep measurements and relaxation of bend stresses under nonisothermal conditions”, Acta Mater., Vol. 45(5), (1997), pp. 2129–2137.[Crossref]
  • [15] K. Csach, Yu.A. Filippov, V.A. Khonik, V.A. Kulbaka and V. Ocelík: “Nonisothermal strain recovery as a result of irreversible structural relaxation of metallic glasses”, Phil. Mag. A, Vol. 81(8), (2001), pp. 1901–1915.[Crossref]
  • [16] A. Kuršumovič and B. Cantor: “Anelastic crossover and creep recovery spectra in Fe40Ni40B20 metallic glass”, Scripta Materialia, Vol. 34(11), (1996), pp. 1655–1660.[Crossref]
  • [17] B. Wei, T. Zhang, W. Li, D. Xing, L. Zhang and Y. Wang: “Indentation Creep Behavior in Ce-Based Bulk Metallic Glasses”, Mater. Trans., Vol. 46(12), (2005), pp. 2959–2962.[Crossref]
  • [18] A. Concustell, J. Sort, A.L. Greer and M.D. Baró: “Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass”, Appl. Phys. Lett., Vol. 88, (2006), art. 171911.
  • [19] A.I. Taub and F. Spaepen: “Ideal elastic, anelastic and viscoelastic deformation of a metallic glass”, J. Mater. Sci., Vol. 16(11), (1984), pp. 3087–3092.[Crossref]
  • [20] M.R.J. Gibbs, J.E. Evetts and J.A. Leake: “Activation energy spectra and relaxation in amorphous materials”, J. Mater. Sci., Vol. 18(1), (1983), pp. 278–288.[Crossref]
  • [21] K. Csach, V.A. Khonik, A.T. Kosilov and V.A. Mikhailov: “Creep stages of a metallic glass”, Mat. Sci. Eng. A, Suppl.: Proceedings of the 9th Int. Conference on Rapidly quenched & metastable materials, (1997), pp. 357–360.
  • [22] V.A. Khonik, A.T. Kosilov and V.A. Mikhailov: “The kinetics of stress-oriented structural relaxation in metallic glasses”, J. Non-Cryst. Solids, Vol. 192–193, (1995), pp. 420–423.[Crossref]
  • [23] H. Stulens, G. Knuyt, W. De Ceuninck and L.M. Stals: “A simple method for calculating an energy spectrum for defect annealing from a constant heating rate experiment”, Phil. Mag. B, Vol. 66(5), (1992), pp. 601–613. [Crossref]
  • [24] A. Kasardová, V. Ocelík, K. Csach, J. Miškuf: “Kinetics of creep strain recovery in Fe-Ni-B amorphous ribbon”, Mat. Sci. Eng. A, Suppl.: Proceedings of the 9th Int. Conference on Rapidly quenched & metastable materials, (1997), pp. 349–352.
  • [25] A. Juríková, K. Csach, J. Miškuf and V. Ocelík: “Creep recovery of metallic glass Fe-Ni-B after longtime stress-annealing”, Czech. J. Phys., Vol. 54, Suppl. D, (2004), pp. D129–D132.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.