Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2007 | 5 | 1 | 35-48

Article title

Non-linear dynamics of spinodal decomposition in multi-component polymer systems. I. General approach


Title variants

Languages of publication



Spinodal decomposition of multi-component systems is analyzed within the framework of a new approach focusing on the description of this dynamic process in terms of the Langevin equation for the one-time structure factor S(q, t) treated as an independent dynamic object. We apply this approach, in particular, to multi-component incompressible polymer systems (binary polymer solutions, ternary polymer blends etc.). The dynamic equation describing the simultaneous relaxation of both the order parameters (component concentrations) and the matrix of the component-component dynamic correlation functions ∥S
ij(q, t)∥, including the explicit expression for the corresponding effective kinetic coefficients, is derived.


  • Faculty of Physics, Moscow State University, 119992, Moscow, Russia


  • [1] J.W. Cahn and J.E. Hilliard: “Free energy of a nonuniform system. Interfacial free energy“, J. Chem. Phys., Vol. 28, (1958), pp. 258–267. http://dx.doi.org/10.1063/1.1744102[Crossref]
  • [2] H.E. Cook: “Brownian motion in spinodal decomposition“, Acta Met., (1970), Vol. 18, pp. 297–306. http://dx.doi.org/10.1016/0001-6160(70)90144-6[Crossref]
  • [3] P.J. De Gennes: “Dynamics of fluctuations and spinodal decomposition in polymer blends“, J. Chem. Phys., Vol. 72, (1980), pp. 4756–4763. http://dx.doi.org/10.1063/1.439809[Crossref]
  • [4] K. Binder: “Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures“, J. Chem. Phys., Vol. 79, (1983), pp. 6387–6409. http://dx.doi.org/10.1063/1.445747[Crossref]
  • [5] K. Binder: “Nucleation barriers, spinodals, and the Ginzburg criterion“, Phys. Rev. A, Vol. 29, (1984), pp. 341–348. http://dx.doi.org/10.1103/PhysRevA.29.341[Crossref]
  • [6] K. Binder: “Theory of first-order phase transitions“, Progr. Rep. Phys., Vol. 50, (1987), pp. 783–859. http://dx.doi.org/10.1088/0034-4885/50/7/001[Crossref]
  • [7] J.S. Langer, M. Bar-on and H.D. Miller: “New computational method in the theory of spinodal decomposition“, Phys. Rev. A, Vol. 11, (1975), pp. 1417–1429. http://dx.doi.org/10.1103/PhysRevA.11.1417[Crossref]
  • [8] J.E. Morral and J.W. Cahn: “Spinodal decomposition in ternary systems“, Acta Metall., Vol. 19, (1971), pp. 1037–1045. http://dx.doi.org/10.1016/0001-6160(71)90036-8[Crossref]
  • [9] J.J. Hoyt: “Spinodal decomposition in ternary alloys“, Acta Metall. Mater., Vol. 37, (1989), pp. 2489–2497. http://dx.doi.org/10.1016/0001-6160(89)90047-3[Crossref]
  • [10] J.J. Hoyt: “Linear spinodal decomposition in a regular ternary alloy“, Acta Metall. Mater., Vol. 38, (1990), pp. 227–231. http://dx.doi.org/10.1016/0956-7151(90)90052-I[Crossref]
  • [11] A.J. Bray: “Theory of phase-ordering kinetics“, Adv. Phys., Vol. 51, (2002), pp. 481–587 http://dx.doi.org/10.1080/00018730110117433[Crossref]
  • [12] A.V. Dobrynin and I.Ya. Erukhimovich: “Fluctuation effects in the theory of weak supercrystallization in block copolymer systems of complicated chemical structure“, J. Phys. II France, Vol. 1, (1991), pp. 1387–1404. http://dx.doi.org/10.1051/jp2:1991147[Crossref]
  • [13] E. Prostomolotova, I. Erukhimovich: “Non-linear dynamics of spinodal decomposition“, Macromol. Symp., Vol. 160, (2000), pp. 215–223. http://dx.doi.org/10.1002/1521-3900(200010)160:1<215::AID-MASY215>3.0.CO;2-D[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.