Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 1 | 103-109

Article title

The effect of doping by IV-family elements on the electronic structure and electrical characteristics of Sb2O5

Content

Title variants

Languages of publication

EN

Abstracts

EN
The electronic structures of doped Sb2O5 by IV-family elements (Si, Ge and Sn) were examined using the density function theory (DFT). Density of states (DOSs) results showed that the substituted IV-family elements act as acceptors in Sb2O5. Partial DOSs indicates that by substituting Ge(GeSb) or Sn(SnSb), there may be a larger contribution to the total DOSs near EF than by substituting Si, which suggests that doping Ge or Sn in Sb2O5 produces better ptype doping compared to doping Si. Formation energy results show that IV-family elements are more likely to exist in the substituted position rather than in the interstitial position in Sb2O5, decreasing any self-compensation effect and making it easier for IV-family elements to realize ptype doping in Sb2O5. Ionization energy results show that GeSb or SnSb, two among the three impurities considered, act as shallow acceptors in Sb2O5, thus producing a higher concentration of holes.

Contributors

author
author
author
  • State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, 310027, P.R. China

References

  • [1] H. Kawazoe, M. Yasukawa, H. Yanagi and H. Hosono: “P-type elctrical conduction in transparent thin films of CuAlO2”, Nature, Vol. 389, (1997), pp. 939–942. http://dx.doi.org/10.1038/40087[Crossref]
  • [2] H. Hosono, H. Ohta, M. Orita, K. Ueda and M. Hirano: “Frontier of transparent conductive oxide thin films”, Vacuum, Vol. 66, (2002), pp. 419–425. http://dx.doi.org/10.1016/S0042-207X(02)00165-3[Crossref]
  • [3] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo and T. Steiner: “Recent progress in processing and properties of ZnO”, Prog. Mater. Sci., Vol.50, (2005), pp.293–340. http://dx.doi.org/10.1016/j.pmatsci.2004.04.001[Crossref]
  • [4] A.N. Banerjee and K.K. Chattopadhyay: “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films”, Prog. Cryst. Growth Ch., Vol. 50, (2005), pp. 52–105. http://dx.doi.org/10.1016/j.pcrysgrow.2005.10.001[Crossref]
  • [5] H. Kawazoe, H. Yanagi, K. Ueda and H. Hosono: “Transparent p-type conducting oxides: Design and fabrication of p-n heterjunctions”, MRS Bull., Vol. 25, (2000), pp. 28–36.
  • [6] R. Nagarajan, N. Duan, M.K. Jayaraj, J. Li, K.A. Vanaja, A. Yokochi, A. Draeseke, J. Tate and A.W. Sleight: “P-type conductivity in the delafossite structure”, Int. J. Inorg. Mater, Vol. 3, (2001), pp. 265–268. http://dx.doi.org/10.1016/S1466-6049(01)00006-X[Crossref]
  • [7] J. Tate, M.K. Jayaraj, A.D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagarajan, J.F. Wager and R.L. Hoffman: “P-type oxides for use in transparent diodes”, Thin Solid Films, Vol. 411, (2002), pp. 119–122. http://dx.doi.org/10.1016/S0040-6090(02)00199-2[Crossref]
  • [8] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano and H. Hosono: “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO”, Thin Solid Films, Vol. 445, (2003), pp. 317–321. http://dx.doi.org/10.1016/S0040-6090(03)01178-7[Crossref]
  • [9] F.R. Sensato, O. Treu Filho, E. Longo, J.R. Sambrano and J. Andres: “Theoretical analysis of the energy levels induced by oxygen vacancies and the doping process (Co, Cu and Zn) on SnO2(110) surface models”, J. Mol. Struct., Vol. 541, (2001), pp. 69–79. http://dx.doi.org/10.1016/S0166-1280(00)00731-4[Crossref]
  • [10] E.Ch. Lee and K.J. Chang: “Possible p-type doping with group-I elements in ZnO”, Phys. Rev. B, Vol. 70, (2004), art. 115210
  • [11] G.D. Yuan, Z.Z. Ye, L.P. Zhu, Q. Qian, B.H. Zhao, R.X. Fan, C.L. Perkins and S.B. Zhang: “Control of conduction type in Al-and N-codoped ZnO thin films”, Appl. Phys. Lett., Vol. 86, (2005), art. 202106
  • [12] Z.G. Ji, L.N. Zhao, Z. He, Q. Zhou and C. Chen: “Transparent p-type conducting Indium doped SnO2thin film deposited by spray-pryrolysis”, Mat. Lett., Vol. 11, (2006), pp. 1387–1389. http://dx.doi.org/10.1016/j.matlet.2005.11.057[Crossref]
  • [13] J. Choisnet, L. Bizo, R. Retoux and B. Raveau: “Antimony and antimony-tin doped indium oxide, IAO and IATO: promising transparent conductors”, Solid State Sci., Vol. 6, (2004), pp. 1121–1123. http://dx.doi.org/10.1016/j.solidstatesciences.2004.07.025[Crossref]
  • [14] D.E. Jiang and E.A. Carter: “First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals”, Acta Materials, Vol. 52, (2004), pp. 4801–4807. http://dx.doi.org/10.1016/j.actamat.2004.06.037[Crossref]
  • [15] S. K. Estreicher, M. Sanati, D. West and F. Ruymgaart: “Thermodynamics of impurities in semiconductors”, Phys. Rev. B, Vol. 70, art. 125209.
  • [16] G.N. Aliev, S. Zeng, J.J. Davies, D. Wolverson, S.J. Bingham, P.J. Parbrook and T. Wang: “Nature of acceptor states in magnesium-doped gallium nitride”, Phys. Rev. B, Vol. 71, (2005), art. 195204.
  • [17] C.G. Van de Walle and J. Neugebauer: “First-principles calculations for defects and impurities: Applications to III-nitrides”, Appl. Phys. R, Vol. 95, (2004), pp. 3851–3879. http://dx.doi.org/10.1063/1.1682673[Crossref]
  • [18] Z.G. Ji, L.J. Huo and J. Du: “Preparation of p-type transparent conducting tindoped antimony oxide thin films by DC reactive magnetron sputtering”, submitted.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-006-0037-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.