Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 1 | 1-10

Article title

Pre-low-mass X-ray binaries containing a black hole: investigating a detection mechanism

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work investigates the feasibility of detecting close, detached, black hole-red dwarf binaries, which are expected to be evolutionary precursors of low-mass X-ray binaries (LMXBs). Although this pre-low-mass X-ray binary (pre-LMXB) phase of evolution is predicted theoretically, as yet no such systems have been identified observationally. The calculations presented here suggest that the X-ray luminosity of black hole wind accretion in a pre-LMXB system could exceed the intrinsic X-ray luminosity of the red dwarf secondary star, thereby providing a detection mechanism. However, there is significant uncertainty regarding the efficiency of the conversion of gravitational potential energy to X-ray luminosity resulting from accretion onto a black hole, for example energy may be lost via advection across the event horizon. Still, sources with X-ray luminosities greater than that expected for a red dwarf star, but whose positions coincide with that of a red dwarf would represent candidate pre-LMXB systems. These candidates should be surveyed for the radial velocity shifts that would occur as a result of the orbital motion of a red dwarf star within a close binary system containing a black hole.

Keywords

Contributors

author
  • Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan

References

  • [1] R.F. Webbink: “Common Envelope Evolution and Formation of Cataclysmic Variables and Low-Mass X-Ray Binaries”, In: E.P.J van den Heuvel and S.A. Rappaport (Eds.): X-Ray Binaries and Recycled Pulsars, Kluwer, Dordrecht, 1992, p. 269.
  • [2] F. Verbunt: “Origin and evolution of X-ray binaries and binary radio pulsars”, Annu. Rev. Astron. Astr, Vol. 31, (1993), pp. 93–127. http://dx.doi.org/10.1146/annurev.aa.31.090193.000521[Crossref]
  • [3] I. Iben, A.V. Tutukov and L.R. Yungelson: “A Model of the Galactic X-Ray Binary Population. II. Low-Mass X-Ray Binaries in the Galactic Disk”, Astrophys. J. Suppl. S., Vol. 100, (1995), pp. 233–268. http://dx.doi.org/10.1086/192218[Crossref]
  • [4] V. Kalogera: “Formation of Low-Mass X-Ray Binaries. III. A New Formation Mechanism: Direct Supernova”, Astrophys. J., Vol. 493, (1998), pp. 368–374. http://dx.doi.org/10.1086/305086[Crossref]
  • [5] J.N. Bleach: “A possible detection mechanism for pre-low-mass X-ray binaries”, Mon. Not. R. Astron. Soc., Vol. 332, (2002), pp. 689–696. http://dx.doi.org/10.1046/j.1365-8711.2002.05344.x[Crossref]
  • [6] J.N. Bleach, J.H. Wood, M.S. Catalán, W.F. Welsh, E.L. Robinson and W. Skidmore: “Observations of the post-common-envelope binaries EG UMa and PG 1026+002”, Mon. Not. R. Astron. Soc., Vol. 312, (2000), pp. 70–82. http://dx.doi.org/10.1046/j.1365-8711.2000.03218.x[Crossref]
  • [7] B. Willems and U. Kolb: “On the detection of pre-low-mass X-ray binaries”, Mon. Not. R. Astron. Soc., Vol. 343, (2003), pp. 949–958. http://dx.doi.org/10.1046/j.1365-8711.2003.06750.x[Crossref]
  • [8] S.B. Popov: “On the spin evolution of neutron stars in pre-low-mass X-ray binaries”, Astron. Astrophys., Vol. 418, (2004), pp. 699–702. http://dx.doi.org/10.1051/0004-6361:20035695[Crossref]
  • [9] X.-W. Liu and X.-D. Li: “A population synthesis study on the faint X-ray sources in the Galactic center region”, Astron. Astrophys., Vol. 449, (2006), pp. 135–142. http://dx.doi.org/10.1051/0004-6361:20053145[Crossref]
  • [10] T.A. Fleming, I.M. Gioia and T. Maccacaro: “The relation between X-ray emission and rotation in late-type stars from the perspective of X-ray selection”, Astrophys. J., Vol. 340, (1989), pp. 1011–1023. http://dx.doi.org/10.1086/167454[Crossref]
  • [11] J. Patterson: “Late Evolution of Cataclysmic Variables”, Publ. Astron. Soc. Pac., Vol. 110, (1998), pp. 1132–1147. http://dx.doi.org/10.1086/316233[Crossref]
  • [12] K. Davidson and J.P. Ostriker: “Neutron-Star Accretion in a Stellar Wind: Model for a Pulsed X-Ray Source”, Astrophys. J., Vol. 179, (1973), pp. 585–598. http://dx.doi.org/10.1086/151897[Crossref]
  • [13] B.C. Bisscheroux, O.R. Pols, P. Kahabka, T. Belloni and E.P.J. van den Heuvel: “The nature of the bright subdwarf HD 49798 and its X-ray pulsating companion”, Astron. Astrophys., Vol. 317, (1997), pp. 815–822.
  • [14] E.M. Sion and S.G. Starrfield: “Feige 24-Wind/flare accretion by a hot DAZ1 degenerate”, Astrophys. J., Vol. 286, (1984), pp. 760–762. http://dx.doi.org/10.1086/162652
  • [15] J.R. Hurley, C.A. Tout and O.R. Pols: “Evolution of binary stars and the effect of tides on binary populations”, Mon. Not. R. Astron. Soc., Vol. 329, (2002), pp. 897–928. http://dx.doi.org/10.1046/j.1365-8711.2002.05038.x[Crossref]
  • [16] K. Belczynski and R.E. Taam: “On the Chandra X-Ray Sources in the Galactic Center”, Astrophys. J., Vol. 616, (2004), pp. 1159–1166. http://dx.doi.org/10.1086/424916[Crossref]
  • [17] K. Belczynski, V. Kalogera, F.A. Rasio, R.E. Taam, A. Zezas, T. Bulik, T.J. Maccarone and N. Ivanova: “Compact Object Modeling with the StarTrack Population Synthesis Code”, Astrophys. J. Suppl. S., (2005), submitted (astro-ph/0511811). [WoS]
  • [18] G.M. Beskin and S.V. Karpov: “Low-rate accretion onto isolated stellar-mass black holes”, Astron. Astrophys., Vol. 440, (2005), pp. 223–238. http://dx.doi.org/10.1051/0004-6361:20040572[Crossref]
  • [19] P.G. Jonker and G. Nelemans: “The distances to Galactic low-mass X-ray binaries: consequences for black hole luminosities and kicks”, Mon. Not. R. Astron. Soc., Vol. 354, (2004), pp. 355–366. http://dx.doi.org/10.1111/j.1365-2966.2004.08193.x[Crossref]
  • [20] S. Campana and L. Stella: “On the Bolometric Quiescent Luminosity and Luminosity Swing of Black Hole Candidate and Neutron Star Low-Mass X-Ray Transients”, Astrophys. J., Vol. 541, (2000), pp. 849–859. http://dx.doi.org/10.1086/309493[Crossref]
  • [21] P.P. Eggleton: “Approximations to the radii of Roche lobes”, Astrophys. J., Vol. 268, (1983), pp. 368–369. http://dx.doi.org/10.1086/160960[Crossref]
  • [22] S. Mineshige and C.J. Wheeler: “Disk-instability model for soft-X-ray transients containing black holes”, Astrophys. J., Vol. 343, (1989), pp. 241–253. http://dx.doi.org/10.1086/167701[Crossref]
  • [23] J. van Paradijs: “On the Accretion Instability in Soft X-Ray Transients”, Astrophys. J., Vol. 464, (1996), pp. L139–L141. http://dx.doi.org/10.1086/310100[Crossref]
  • [24] A.R. King, U. Kolb and L. Burderi: “Black Hole Binaries and X-Ray Transients”, Astrophys. J., Vol. 464, (1996), pp. L127–L130. http://dx.doi.org/10.1086/310105[Crossref]
  • [25] T. Shahbaz, T. Naylor and P.A. Charles: “The mass of the black hole in A0620-00”, Mon. Not. R. Astron. Soc., Vol. 268, (1994), pp. 756–762.
  • [26] I. Yi, R. Narayan, D. Barret and J.E. McClintock: “Models of quiescent black hole and neutron star soft X-ray transients”, Astron. Astrophys. Sup., Vol. 120, (1996), pp. 187–190. http://dx.doi.org/10.1051/aas:1996284[Crossref]
  • [27] J.A. Tomsick, S. Corbel, R. Fender, J.M. Miller, J.A. Orosz, M.P. Rupen, T. Tzioumis, R. Wijnands and P. Kaaret: “Chandra Detections of Two Quiescent Black Hole X-Ray Transients”, Astrophys. J., Vol. 597, (2003), pp. L133–L136. http://dx.doi.org/10.1086/380088[Crossref]
  • [28] R. Narayan, J.E. McClintock and I. Yi: “A New Model for Black Hole Soft X-Ray Transients in Quiescence”, Astrophys. J., Vol. 457, (1996), pp. 821–833. http://dx.doi.org/10.1086/176777[Crossref]
  • [29] R. Narayan, R. Mahadevan and E. Quataert: “Advection-dominated accretion around black holes”, In: M.A. Abramowicz, G. Bjornsson and J.E. Pringle (Eds.): Theory of Black Hole Accretion Disks, Cambridge University Press, Cambridge, 1998, p. 148.
  • [30] S. Kato, J. Fukue and S. Mineshige: Black hole accretion disks, Kyoto University Press, Kyoto, 1998.
  • [31] M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S.S. Murray: “New Evidence for Black Hole Event Horizons from Chandra”, Astrophys. J., Vol. 553, (2001), pp. L47–L50. http://dx.doi.org/10.1086/320494[Crossref]
  • [32] R. Narayan, M.R. Garcia and J.E. McClintock: “X-ray novae and the evidence for black hole event horizons”, In: V.G. Gurzadyan, R.T. Jantzen and R. Ruffini (Eds.): The Ninth Marcel Grossmann Meeting. Proceedings of the MGIXMM Meeting held at The University of Rome ‘La Sapienza’ 2–8 July 2000, World Scientific Publishing, Singapore, 2002, pp. 405–425.
  • [33] J.-M. Hameury, D. Barret, J.-P. Lasota, J.E. McClintock, K. Menou, C. Motch, J.F. Olive and N. Webb: “XMM-Newton observations of two black hole X-ray transients in quiescence”, Astron. Astrophys., Vol. 399, (2003), pp. 631–637. http://dx.doi.org/10.1051/0004-6361:20021746[Crossref]
  • [34] J.E. McClintock, R. Narayan, M.R. Garcia, J.A. Orosz, R.A. Remillard and S.S. Murray: “Multiwavelength Spectrum of the Black Hole XTE J1118+480 in Quiescence”, Astrophys. J., Vol. 593, (2003), pp. 435–451. http://dx.doi.org/10.1086/376406[Crossref]
  • [35] S. Migliari and R.P. Fender: “Jets in neutron star X-ray binaries: a comparison with black holes”, Mon. Not. R. Astron. Soc., Vol. 366, (2006), pp. 79–91.
  • [36] R. Narayan, D. Barret and J.E. McClintock: “Advection-dominated Accretion Model of the Black Hole V404 Cygni in Quiescence”, Astrophys. J., Vol. 482, (1997), pp. 448–464. http://dx.doi.org/10.1086/304134[Crossref]
  • [37] E. Agol and M. Kamionkowski: “X-rays from isolated black holes in the Milky Way”, Mon. Not. R. Astron. Soc., Vol. 334, (2002), pp. 553–562. http://dx.doi.org/10.1046/j.1365-8711.2002.05523.x[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-006-0035-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.