Preferences help
enabled [disable] Abstract
Number of results
2006 | 4 | 4 | 511-521
Article title

From the Hamiltonian to the Lagrangean formalism for 1-reducible theories. The Freedman-Townsend model

Title variants
Languages of publication
The paper presents a possible path to the sp(3) BRST Lagrangean formalism for a 1-reducible gauge field theory starting from the Hamiltonian one. This appears to be not at all a trivial attempt and will allow explanation of the structure of generators and the form of the master equations in the Lagrangean sp(3) theories. The Freedman-Townsend model, for which a Lagrangean (covariant) sp(3) theory is important, is presented.

Physical description
1 - 12 - 2006
1 - 12 - 2006
  • Dept. of Theoretical Physics, University of Craiova, 200 585, Craiova, Romania
  • [1] C. Batlle, J. Gomis, J. Paris and J. Roca: “Field-antifield formalism and Hamiltonian BRST approach”, Nucl. Phys. B, Vol. 329, (1990), pp. 139–154.[Crossref]
  • [2] J.M.L. Fisch and M. Henneaux: “Antibracket-antifield formalism for constrained Hamiltonian systems”, Phys. Lett. B, Vol. 226, (1989), pp. 80–88.[Crossref]
  • [3] A. Dresse, J.M.L. Fisch, P. Gregoire and M. Henneaux: “Equivalence of the Hamiltonian and Lagrangian path integrals for gauge theories”, Nucl. Phys. B, Vol. 354, (1991), pp. 191–217.[Crossref]
  • [4] R. Constantinescu and C. Ionescu: “The equivalence between the Lagrangian and the Hamiltonian formalisms for the extended BRST symmetry”, Int. J. Mod. Phys. A, Vol. 21, (2006), pp. 1567–1575.[Crossref]
  • [5] R. Constantinescu and C. Ionescu: “Gauge fixing procedure in the extended BRST theory. The example of the abelian 2-forms”, Annalen der Physik, Vol. 15(3), (2006), pp. 169–176.[Crossref]
  • [6] C. Bizdadea and S.O. Saliu: “Lagrangian Sp(3) BRST symmetry”, In: 3 rd International Spring School and Workshop on Quantum Field Theory and Hamiltonian Systems, Calimanesti (Romania), 2002, Phys. AUC 12 (part III), Craiova, 2002, pp. 150–182.
  • [7] R. Constantinescu and C. Ionescu: “The sp(3) BRST symmetry for reducible dynamical systems”, Mod. Phys. Lett. A, Vol. 15(16), (2000), pp. 1037–1042.[Crossref]
  • [8] D.Z. Freedman and P.K. Townsend: “Antisymmetric tensor gauge theories and nonlinear σ-model”, Nucl. Phys B, Vol. 177, (1981), pp. 282–296.[Crossref]
  • [9] S.P. de Alwis, M.T. Grisaru and L. Mezincescu: “Quantization and unitarity in antisymmetric tensor gauge theories””, Nucl. Phys. B, Vol. 303, (1988), pp. 57–76.[Crossref]
  • [10] G. Barnich, R. Constantinescu and Ph. Gregoire: “The BRST-anti-BRST antifield formalism: the example of the Freedman-Townsend model”, Phys. Lett. B, Vol. 293, (1992), pp. 353–360.[Crossref]
  • [11] S.O. Saliu: “Antibracket-antifield sp(3) BRST approach to the irreducible Freedman-Townsend model”, Physica Scripta, Vol. 68, (2003), pp. 219–226.[Crossref]
  • [12] R. Constantinescu and C. Ionescu: “The sp(3) BRST Hamiltonian formalism for the Freedman-Townsend model and its connection with the Lagrangian one”, In: 4 th International Spring School and Workshop on Quantum Field Theory and Hamiltonian Systems, Calimanesti (Romania), 2004, Phys. AUC 15 (part I), Craiova, 2005, pp. 206–214.
  • [13] I.A. Batalin, P.M. Lavrov and I.V. Tyutin: “An sp(2) covariant quantization of gauge theories with linearly dependent generators”, J. Math. Phys., Vol. 32, (1991), pp. 532–539.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.