Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 4 | 481-493

Article title

Atomic simulation of the vacancies in BCC metals with MAEAM


Title variants

Languages of publication



The formation energy of the mono-vacancy and both the formation energy and binding energy of the di-and tri-vacancy in BCC alkali metals and transition metals have been calculated by using the modified analytical embedded-atom method (MAEAM). The formation energy of each type of configuration of the vacancies in the alkali metals is much lower than that in the transition metals. From minimum of the formation energy or maximum of the binding energy, the favorable configuration of the di-vacancy and tri-vacancy respectively is the first-nearest-neighbor (FN) or second-nearest-neighbor (SN) di-vacancy and the [112] tri-vacancy constructed by two first-and one second-nearest-neighbor vacancies. It is indicated that there is a concentration tendency for vacancies in BCC metals.










Physical description


1 - 12 - 2006
1 - 12 - 2006


  • College of Physics and Information Technology, Shaanxi Normal University, Xian, 710062, Shaanxi, PR China
  • College of Physics and Information Technology, Shaanxi Normal University, Xian, 710062, Shaanxi, PR China
  • State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian, 710049, Shaanxi, PR China


  • [1] J.M. Zhang, K.W. Xu and V. Ji: “Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substractes”, Appl. Surf. Sci., Vol. 187, (2002), pp. 60–67. http://dx.doi.org/10.1016/S0169-4332(01)00782-6[Crossref]
  • [2] T.R. Mattsson and A.E. Mattsson: “Calculating the vacancy formation energy in metals: Pt, Pd and Mo”, Phys. Rev. B, Vol. 66, (2002), art. 214110.
  • [3] K.F. McCarty, J.A. Nobel and N.C. Bartelt: “Vacancies in solids and the stability of surface morphology”, Nature, Vol. 412, (2001), pp. 622–625. http://dx.doi.org/10.1038/35088026[Crossref]
  • [4] Y. Kraftmakher: “Equilibrium vacancies and thermophysical properties of metals”, Phys. Rep., Vol. 299, (1998), pp. 79–188. http://dx.doi.org/10.1016/S0370-1573(97)00082-3[Crossref]
  • [5] D. Tumball, H.S. Rosenbaum and H.N. Teatfis: “Kinetics of clustering in some Aluminum alloys”, Acta Metall., Vol. 8, (1960), pp. 277–295. http://dx.doi.org/10.1016/0001-6160(60)90114-0[Crossref]
  • [6] A.V. Kozlov and V.V. Kirsanov: “Radiation defect formation and evolution in C0.03Cr20Ni16Mn6 steel under low-temperature neutron irradiation and their effecton physical and mechanual properties of steel”, J. Nucl. Mat., Vol. 233–237, (1996), pp. 1062–1066. http://dx.doi.org/10.1016/S0022-3115(96)00072-4
  • [7] R.S. Brusa, W. Deng, G.P. Karwasz and A. Zecca: “Doppler-broadening measurements of positron annihilation with high-momentum electrons in pure elements”, Nucl. Instrum. Meth. B, Vol. 194, (2002), pp. 519–531. http://dx.doi.org/10.1016/S0168-583X(02)00953-9[Crossref]
  • [8] R.A. Johnson: “Alloy models with the embedded-atom method”, Phys. Rev. B, Vol. 39, (1989), pp. 12554–12559. http://dx.doi.org/10.1103/PhysRevB.39.12554[Crossref]
  • [9] R.A. Johnson and D.J. Oh: “Analytic embedded atom method model for BCC metals”, J. Mat. Res., Vol. 4, (1989), pp. 1195–1201.
  • [10] R.A. Johnson: “Analytic nearest-neighbor model for fcc metals”, Phys. Rev. B, Vol. 37, (1988), pp. 3924–3931. http://dx.doi.org/10.1103/PhysRevB.37.3924[Crossref]
  • [11] W.Y. Hu, B.W. Zhang, X.L. Shu and B.Y. Huang: “Calculation of formation enthalpies and phase stability for Ru-Al alloys using an analytic embedded atom model”, J. Alloy. Compd., Vol. 287, (1999), pp. 159–162. http://dx.doi.org/10.1016/S0925-8388(99)00024-9[Crossref]
  • [12] B.W. Zhang, Y.F. Ouyang, S.Z. Liao and Z.P. Jin: “An analytic MEAM model for all BCC transition metals”, Physica B, Vol. 262, (1999), pp. 218–225. http://dx.doi.org/10.1016/S0921-4526(98)01156-9[Crossref]
  • [13] X.L. Shu, W.Y. Hu, H.N. Xiao and H.Q. Deng: “Vacancies and Antisites in B2 FeAl and DO3 Fe3Al with a Modified Analytic EAM Model”, J. Mater. Sci. Technol, Vol. 17, (2001), pp. 601–604.
  • [14] J.H. Rose, J.R. Smith, F. Guinea and J. Ferante: “Universal features of the equation of state of metals”, Phys. Rev. B, Vol. 29, (1984), pp. 2963–2969. http://dx.doi.org/10.1103/PhysRevB.29.2963[Crossref]
  • [15] B.W. Zhang, W.Y. Hu and X.L. Shu: “MAEAM theory”, In: Theory of Embedded Atom Method and Its Application to Materials Science - Atomic Scale Materials Design Theory, Hunan University Press, Changsha, 2003, pp. 245–251 (in Chinese).
  • [16] M.L. Swanson, G.R. Piercy, G.V. Kidson and A. F. Quenneville: “Defects in quenched zirconium”, J. Nucl. Mat., Vol. 34, (1970), pp. 340–342. http://dx.doi.org/10.1016/0022-3115(70)90202-3[Crossref]
  • [17] K. Maier, M. Peo, B. Saile, H.E. Schaefer and A. Seeger: “High-temperature positron annihilation and vacancy formation in refractory metals”, Philos. Mag. A, Vol. 40, (1979), pp. 701–728.
  • [18] Y.F. Ouyang, B.W. Zhang and S.Z. Liao: “Calculation of Self-diffusion Activation Energies for Alkaline Metals With Embedded Atom Method”, Sci. China A, Vol. 37, (1994), pp. 1232–1240
  • [19] B.W. Zhang, W.Y. Hu and X.L. Shu (Eds): “Calculation of the point defects and diffusion properties in pure metal elements by using MAEAM theory”, In: Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory, Hunan University Press, Changsha, 2003, p. 300 (in Chinese).
  • [20] R.P. Vinci, T.N. Marieb and J.C. Bravman: “Non-destructive evaluation of strains and voiding in passivated copper metallizations”, Mater. Res. Soc. Symp. Proc., Vol. 308, (1993), pp. 297–302.
  • [21] P. Borgensen, J.K. Lee, R. Gleixner and C.Y. Li: “Thermal-stress-induced voiding in narrow, passivated Cu lines”, Appl. Phys. Lett., Vol. 60, (1992), pp. 1706–1708. http://dx.doi.org/10.1063/1.107192[Crossref]
  • [22] J.M. Zhang and K.W. Xu: “Yield strengths and stress induced crackles in copper films: effects of substrate and passivated layer”, Chinese Phys., Vol. 13, (2004), pp. 205–211. http://dx.doi.org/10.1088/1009-1963/13/2/015[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.