Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 4 | 494-502

Article title

NIR photoresponse in the mixed phthalocyanine films


Title variants

Languages of publication



The structure, optical and conducting properties of thin vacuum deposited films of erbium bisphthalocyanine (Pc2Er) and its mixtures with metal-free phthalocyanine (H2Pc) have been studied with particular reference to the near infrared (NIR). It has been found that, in spite of intense optical absorbance over the UV/Vis/NIR domain, pure Pc2Er films are weakly photoconductive. However, in the mixed Pc2Er/H2Pc films the photocurrent signal was detected in the NIR range of 1200–1500 nm, which is associated with optical activity of Pc2Er molecules.










Physical description


1 - 12 - 2006
1 - 12 - 2006


  • Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russian Federation
  • Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russian Federation
  • Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russian Federation


  • [1] P.N. Moskalev and I.S. Kirin: “Synthesis and some properties of yttrium and erbium diphthalocyanines”, Zhurnal Neorganitcheskoi Khimii, Vol. 15, (1970), pp. 13–15 (in Russian).
  • [2] J. Simon and P. Bassoul: Design of Molecular Materials: Supramolecular engineering, John Wiley & Sons, London and New York, 2001, pp. 196–295.
  • [3] A.N. Darovskikh and O.V. Frank-Kamenetskaya: “Crystallographic structure of phthalocyanine complexes with metals. Peculiarities of charge transfer bonds”, In: Problems of Crystallography, Nauka, Moscow, 1988, pp. 117–134 (in Russian); M.K. Engel: “Single-crystal and solid-state molecular structures of phthalocyanine complexes”, Rep. Kawamura Inst. Chem. Res. /Kawamura Rikagaku Kenkyusho Hokoku/, Vol. 1997, (1996), pp. 11–54.
  • [4] G. Ostendorp, J.P. Werner and H. Homborg: “Bis(phthalocyaninato)erbium (alpha-1 phase)”, Acta Crystallogr., Vol. C51, (1995), pp. 1125–1128; G. Ostendorp and H. Homborg: “Synthesis and spectroscopical properties of the mixed-valent di(phthalocyaninato)lanthanides(III)’, Zeitschrift fuer Anorganische und Allgemaine Chemie, Vol. 622, (1996), pp. 1222–1418.
  • [5] L. Cao, H.-Z. Chen, L. Zhu, X-B. Zhang and M. Wang: “Optical absorption and structural studies of erbium biphthalocyanine sublimed films”, Mater. Lett., Vol. 57, (2003), pp. 4309–4314. http://dx.doi.org/10.1016/S0167-577X(03)00308-2[Crossref]
  • [6] M. Falke, X. Graehlert, U. Falke, S. Schulze and M. Hietsschold: “Structural imaging of lanthanide diphthalocyanines by transmission electron-microscopy”, Phys. Stat. Sol. A, Vol. 150, (1995), pp. 359–369.
  • [7] R. Jones, A. Krier and K. Davidson: “Structure, electrical conductivity and electrochromism in thin films of substituted and unsubstituted lanthanide bisphthalocyanines”, Thin Solid Films, Vol. 298, (1997), pp. 228–236. http://dx.doi.org/10.1016/S0040-6090(96)09302-9[Crossref]
  • [8] J. Buffler, M. Abraham, M. Bouvet, J. Simon and W. Goepel: “Growth and electronic-properties of ultrathin lutetium-diphthalocyanine films studied by electron-spectroscopy”, J. Chem. Phys., Vol. 95, (1991), pp. 8459–8466. http://dx.doi.org/10.1063/1.461275[Crossref]
  • [9] J. Padilla and W. Hatfield: “Correlation between pi-orbital overlap and conductivity in bis-phthalocyaninato lanthanides”, Inorg. Chim. Acta, Vol. 185, (1991), pp. 131–136. http://dx.doi.org/10.1016/S0020-1693(00)85435-3[Crossref]
  • [10] I. Muzikante, E. Fonavs, E. Silinsh, C. Fretigny, M. Bouvet, J. Simon and S. Spirkovitch: “Charge carrier transport properties of thin films of an intrinsic molecular semiconductor: Lutetium bisphthalocyanine”, Mol. Cryst. Liq. Cryst., Vol. C9, (1998), pp. 301–331.
  • [11] V.A. Ilatovskii, G.P. Shaposhnikov, I.B. Dmitriev, V.M. Rudakov and G.G. Komissarov: “Photovoltaic activity of films prepared from extracoordinated tetrapyrrole compounds”, Rus. J. Phys. Chem., Vol. 73, (1999), pp. 1855–1858.
  • [12] A. Parr, S.J. Vinton, A. Krier and R.A. Collins: “Morphology and gas sensitivity of erbium di-phthalocyanine thin-films”, Czech. J. Phys., Vol. 43, (1993), pp. 969–976. http://dx.doi.org/10.1007/BF01595288[Crossref]
  • [13] J. Silver, M.T. Ahmed, J. Billingham and J. Littler: “Development of wavelength selective shutters for device application for filters and smart windows”, IEE P.-Circ. Dev. Syst., Vol. 144, (1997), pp. 123–127. J. Zhang, F. Lu, H. Huang, J. Wang, H. Yu, J. Jiang, D. Yan and Z. Wang: “Near infrared electrochromism of lutetium phthalocyanine”, Synt. Met., Vol. 148, (2005), pp. 123–126; C. Bariain, I.R. Matias, C. Fernandez-Valdivielso, F.J. Arregui, M.L. Rodriguez-Mendez and J.A. de Saja: “Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths”, Sensor. Actuat. B, Vol. 93, (2003), pp. 153–158. http://dx.doi.org/10.1049/ip-cds:19971080[Crossref]
  • [14] D. Markovitsi, T.-H. Tran-Thi, R. Even and J. Simon: “Near infrared absorption spectra of lanthanide bis-phthalocyanines”, Chem. Phys. Lett., Vol. 137, (1987), pp. 107–112. http://dx.doi.org/10.1016/0009-2614(87)80313-5[Crossref]
  • [15] R. Rousseau, R. Aroca and M.L. Rodriguez-Mendez: “Extended huckel molecular-orbital model for lanthanide bisphthalocyanine complexes”, J. Mol. Struct., Vol. 356, (1995), pp. 49–62. http://dx.doi.org/10.1016/0022-2860(95)08905-B[Crossref]
  • [16] E. Orti, J.L. Bredas and C. Clarisse: “Electronic structure of phthalocyanines: Theoretical investigation of the optical properties of phthalocyanine monomers, dimers and crystals”, J. Chem. Phys., Vol. 92, (1990), pp. 1228–1235. http://dx.doi.org/10.1063/1.458131[Crossref]
  • [17] S.E. Harrison: “Origin of Photocarriers in Phthalocyanines”, J. Chem. Phys., Vol. 50, (1969), pp. 4739–4742; A.Yu. Vakhnin, Ya.I. Vertsimakha, V.I. Trofimov and L.I. Tsirkova: “Energy-state of lead phthalocyanine in the singlet-triplet transition band”, Ukrainskii Fizicheskii Zhurnal, Vol. 38, (1993), pp. 204–208. http://dx.doi.org/10.1063/1.1670963[Crossref]
  • [18] C. Videlot, D. Fichou and F. Garnier: “Photovoltaic solar cells based on rare earth bisphthalocyanine complexes”, Synt. Met., Vol. 102, (1999), pp. 1052–1052. http://dx.doi.org/10.1016/S0379-6779(98)01320-4[Crossref]
  • [19] V.P. Kulinich, G.P. Shaposhnikov, V.E. Maizlish and R.P. Smirnov: “Substituted yttrium and erbium monophthalocyanine and diphthalocyanine complexes - synthesis, spectra, and thermal-stability”, Koordinatsionnaya Khimiya, Vol. 20, (1994), pp. 866–869; V.E. Maizlish, E.E. Kolesnikova, V.P. Kulinich, E.E. Sokolskaya, G.P. Shaposhnikov and R.P. Smirnov: “Dihalophthalocyanines and their metallocomplexes”, Koordinatsionnaya Khimiya, Vol. 20, (1994), pp. 766–768.
  • [20] J. Jiang, D. Arnold and H. Yu: “Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes”, Polyhedron, Vol. 18, (1999), pp. 2129–2139. http://dx.doi.org/10.1016/S0277-5387(99)00097-2[Crossref]
  • [21] G.L. Pakhomov, Yu.D. Semchikov and L.G. Pakhomov: “2-component sublimed films based on phthalocyanines for gas analytical applications”, Mendeleev Commun., (1995), pp. 204–205; G.L. Pakhomov and Yu.N. Drozdov: “Mixed crystal phthalocyanine films”, Cryst. Eng., Vol. 6, (2003), pp. 23–29; G.L. Pakhomov, V.I. Shashkin, D.E. Pozdnyaev, C. Muller and J.-M. Ribo: “AC measurements on binary phthalocyanine films”, Org. Electr., Vol. 3, (2002), pp. 93–103.
  • [22] B. Rand, J. Xue, F. Yang and S.R. Forrest: “Organic solar cells with sensitivity extending into the near infrared”, Appl. Phys. Lett., Vol. 87, (2005), pp. 233508–233511. http://dx.doi.org/10.1063/1.2140075[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.