Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 4 | 472-480

Article title

The effect of pressure on the elastic constants of Cu, Ag and Au: a molecular dynamics study


Title variants

Languages of publication



This paper describes the effect of pressure on some the mechanical properties of transition metals Cu, Ag, and Au, such as elastic constants and bulk modulus. Using molecular dynamics (MD) simulation, the present study was carried out using the modified many-body Morse potential function expression in the framework of the Embedded Atom Method (EAM). The effect of pressure on equilibrium volume, elastic constants, and bulk modulus were determined, and found to be in agreement with other theoretical calculations and experimental data.










Physical description


1 - 12 - 2006
1 - 12 - 2006


  • Physics Department, Gazi University, 06500, Ankara, Turkey
  • Physics Department, Gazi University, 06500, Ankara, Turkey
  • Physics Department, Firat University, 23169, Elazig, Turkey
  • Physics Department, Firat University, 23169, Elazig, Turkey


  • [1] T. Çağin, G. Dereli, M. Uludoğan and M. Tomak: “Thermal and mechanical properties of some fcc transition metals”, Phys. Rev. B., Vol. 59(4), (1999), pp. 3468–3473. http://dx.doi.org/10.1103/PhysRevB.59.3468[Crossref]
  • [2] C. Kittel: Introduction to Solid State Physics, Wiley, New York, 1986.
  • [3] M. D’Astuto, M. Krisch, M. Lorenzen, et al.: “Determination of phonon dispersion curves at gigapascal pressures by inelastic X-ray scattering”, High Pressure Res., Vol. 22(1), (2001), pp. 73–77.
  • [4] S.A. Ostanin, E.I. Salamatov and V.Y. Trubitsin: “Pressure and temperature effects on the Gamma, N and L-phonons in zirconium”, Comput. Mater. Sci., Vol. 17(3–6), (2000), pp. 385–391.
  • [5] L. Louail, D. Maouche, A. Roumili and A. Hachemi: “Pressure effect on elastic constants of some transition metals”, Mat. Chem. Phys., Vol. 91(1), (2005), pp. 17–20. http://dx.doi.org/10.1016/j.matchemphys.2004.10.040[Crossref]
  • [6] J.M. Haile: Moleculer Dinamics Simulation, Elementary Methods, Wiley, Canada, 1992.
  • [7] M. Hasegawa and K. Ohno: “The dependence of the phase diagram on the range of the attractive intermolecular forces”, J. Phys; Cond. Matt., Vol. 9, (1997), pp. 3361–3370. http://dx.doi.org/10.1088/0953-8984/9/16/008[Crossref]
  • [8] Ş. Erkoç: “Empirical many-body potential energy functions used in computer simulations of condensed matter properties”, Phys. Rep., Vol. 278, (1997), pp. 79–105. http://dx.doi.org/10.1016/S0370-1573(96)00031-2[Crossref]
  • [9] G.D. Barrera and R.H. Tendler: “Simulation of metals and alloys using quasiharmonic lattice dynamics”, Comput. Phys. Commun., Vol. 105, (1997), pp. 159–168. http://dx.doi.org/10.1016/S0010-4655(97)00077-5[Crossref]
  • [10] M.S. Daw and M.I. Baskes: “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals”, Phys. Rev. B, Vol. 29(12), (1984), pp. 6443–6453. http://dx.doi.org/10.1103/PhysRevB.29.6443[Crossref]
  • [11] M. Karimi, G. Stapay, T. Kaplan and M. Mostoller: “Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties”, Modelling Simul. Mater. Sci. Eng., Vol. 5, (1997), pp. 337–346. http://dx.doi.org/10.1088/0965-0393/5/4/003[Crossref]
  • [12] Y. Ö. Çiftci and K. Çolakoğlu: “Embedded atom method for theoretical strength and stability of some fcc Metals”, Acta Phys. Pol. A, Vol. 100(4), (2001), pp. 539–544.
  • [13] J. Cai and Y.Y. Ye: “Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys” Phys. Rev. B, Vol. 54(12), (1996), pp. 8398–8410. http://dx.doi.org/10.1103/PhysRevB.54.8398[Crossref]
  • [14] M.L. Verma and R.P.S. Rathore: “Phonons in fcc Thorium”, Phys. Stat. Sol. B, Vol. 185, (1994), pp. 93–99.
  • [15] W.B. Pearson: Handbook of lattice Spacing and structure of Metals and Alloys, Pergamon, Oxford, 1967.
  • [16] R.O. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, 1991.
  • [17] Landolt - Bornstein New Series, Vols. III-11 and III-18, Springer-Verlag, Berlin, 1991.
  • [18] M. Parrinello and A. Rahman: “Polymorphic transition in single crystals: a new molecular dynamics metod”, J. Appl. Phys., Vol. 52(12), (1981), pp. 7182–7190. http://dx.doi.org/10.1063/1.328693[Crossref]
  • [19] Y. Gurler and S. Ozgen: “The calculation of P-T Diagrams of Ni And Al using molecular dynamics simulation”, Matt. Let., Vol. 57, (2003), pp. 4336–4343. http://dx.doi.org/10.1016/S0167-577X(03)00324-0[Crossref]
  • [20] T. Soma, H. Satoh and H. Matsuo: “Equation of state and elastic stiffness constants under pressure of noble metals”, Solid State Commun., Vol. 40, (1981), pp. 933–936. http://dx.doi.org/10.1016/0038-1098(81)90103-4[Crossref]
  • [21] C.V. Pandya, P.R. Vyas, T.C. Pandya, N. Rani and V.B. Gohel: “An improved lattice mechanical model for FCC transition metals”, Physica B, Vol. 307, (2001), pp. 138–149. http://dx.doi.org/10.1016/S0921-4526(01)00634-2[Crossref]
  • [22] W.B. Daniels and C.S. Smith: “Pressure Derivatives of the Elastic Constants of Copper, Silver, and Gold to 10 000 Bars”, Phys. Rev., Vol. 111, (1958), pp. 713–721. http://dx.doi.org/10.1103/PhysRev.111.713[Crossref]
  • [23] Y. Hiki and A.V. Granato: “Anharmonicity in Noble Metals; Higher Order Elastic Constants”, Phys. Rev., Vol. 144(2), (1966), pp. 411–419. http://dx.doi.org/10.1103/PhysRev.144.411[Crossref]
  • [24] F. Milstein and D.J. Rasky: “Volumetric and structural contributions to the interatomic potentials and elastic moduli of cubic metals”, Phys. Rev. B, Vol. 33, (1986), pp. 2341–2349. http://dx.doi.org/10.1103/PhysRevB.33.2341[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.