Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 3 | 310-317

Article title

Ge diffusion on Si surfaces


Title variants

Languages of publication



Ge diffusion on Si(100), (111), and (110) surfaces has been studied by Auger electron spectroscopy and low energy electron diffraction in the temperature range from 600 to 800 °C. Surface diffusion coefficients versus temperature have been measured.










Physical description


1 - 9 - 2006
1 - 9 - 2006


  • Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russian Federation
  • Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russian Federation


  • [1] Yu.L. Gavrilyuk and V.G. Lifshits: “Effect of surface phases on the diffusion of gold on silicon”, Poverhnost, Vol. 4, (1983), pp. 82–89 (in Russian).
  • [2] A.E. Dolbak, R.A. Zhachuk and B.Z. Olshanetsky: “Surface diffusion of Pb on clean Si surfaces”, Cent. Eur. J. Phys., Vol. 2, (2004), pp. 254–265.
  • [3] A.E. Dolbak, B.Z. Olshanetsky, S.I. Stenin, S.A. Teys and T.A. Gavrilova: “Effect of Nickel on Clean Silicon Surfaces: Transport and Structure”, Surf. Sci., Vol. 218, (1989), pp. 37–54. http://dx.doi.org/10.1016/0039-6028(89)90619-5[Crossref]
  • [4] A.E. Dolbak, B.Z. Olshanetskii and S.A. Tiis: “The Interaction of Cobalt with Clean Si(100) and (110) Surfaces”, Poverkhnost, Vol. 11, (1996), pp. 29–38 (in Russian).
  • [5] A.E. Dolbak, R.A. Zhachuk and B.Z. Olshanetsky: “Mechanism of Cu transport along clean Si surfaces”, Cent. Eur. J. Phys., Vol. 1, (2003), pp. 463–473.
  • [6] A.E. Dolbak, B.Z. Olshanetskii and S.A. Tiis: “Mechanism of the Transport of Nickel along a Si(111) Surface in the Presence of Adsorbed Cobalt Atoms”, JETP Lett., Vol. 69, (1999), pp. 459–461. http://dx.doi.org/10.1134/1.568051[Crossref]
  • [7] A.E. Dolbak, B.Z. Olshanetsky and R.A. Zhachuk: “On Ni Diffusion at Si(111) Surface at Fe Coadsorption”, Phys. Low-Dim. Struct., Vol. 9/10, (1998), pp. 97–104.
  • [8] B. Voigtlaender, M. Kawamura, N. Paul and V. Cherepanov: “Formation of Si/Ge nanostructures at surfaces by self-organization”, J. Phys.: Cond. Matt., Vol. 16, (2004), pp. S1535–S1551. http://dx.doi.org/10.1088/0953-8984/16/17/006[Crossref]
  • [9] H.M. Guo, Y.L. Wang, H.W. Liu, H.F. Ma, Z.H. Qin and H.J. Gao: “Formation of Ge nanoclusters on Si(111)-7×7 surface at high temperature”, Surface Sci., Vol. 561, (2004), pp. 227–232 http://dx.doi.org/10.1016/j.susc.2004.05.097[Crossref]
  • [10] D. Srivastava and B.J. Garrison: “Adsorption and diffusion dynamics of a Ge adatom on the Si{100}(2×1) surface”, Phys. Rev. B, Vol. 46, (1992), pp. 1472–1479. http://dx.doi.org/10.1103/PhysRevB.46.1472[Crossref]
  • [11] V. Milman, D.E. Jesson, S.J. Pennycook, M.C. Payne, M.H. Lee and I. Stich: “Large scale ab initio study of the binding and diffusion of Ge adatom on the Si(100) surface”, Phys. Rev. B, Vol. 50, (1994), pp. 2663–2666. http://dx.doi.org/10.1103/PhysRevB.50.2663[Crossref]
  • [12] H.-J. Gossmann and G.J. Fisanick: “Surface diffusion and islanding in semiconductor nanostructures: Ge on Si”, J. Vac. Sci. Technol. Vol. A6, (1988), pp. 2037–2038.
  • [13] Y.-W. Mo and M.G. Lagally: “Anisotropy in surface migration of Si and Ge on Si(001)”, Surface Sci., Vol. 248, (1991), pp. 313–320. http://dx.doi.org/10.1016/0039-6028(91)91177-Y[Crossref]
  • [14] H.J. Kim, Z.M. Zhao, J. Liu, V. Ozolins, J.Y. Chang and Y.H. Xie: “A technique for the measurement of surface diffusion coefficient and activation energy of Ge adatom on Si(001)”, J. Appl. Phys., Vol. 95, (2004), pp. 6065–6071. http://dx.doi.org/10.1063/1.1711175[Crossref]
  • [15] Y. Ymamoto, S. Ino and T. Ichikawa: “Surface Reconstruction on a Clean Si(110) Surface Observed by RHEED”, Jpn. J. Appl. Phys., Vol. 25, (1986), pp. L331–L334. http://dx.doi.org/10.1143/JJAP.25.L331[Crossref]
  • [16] P.W. Palmberg, G.E. Riach, R.E. Weber and N.C. Mac-Donnald: Handbook of Auger Electron Spectroscopy, Physical Electronics Industries Inc., Minnesota, 1972.
  • [17] D. Brigs and M.P. Seach: Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, John Willey & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1983.
  • [18] T. Ichikawa and S. Ino: “RHEED Study on the Ge/Si(111) and Si/Ge(111) systems: Reaction of Ge with the Si(111) surface”, Surface Sci., Vol. 136, (1984), pp. 267–284. http://dx.doi.org/10.1016/0039-6028(84)90611-3[Crossref]
  • [19] Y.-W. Mo, D.E. Savage, B.S. Swartzentruber and M.G. Lagally: “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001)”, Phys. Rev. Lett., Vol. 65, (1990), pp. 1020–1023. http://dx.doi.org/10.1103/PhysRevLett.65.1020[Crossref]
  • [20] H.J. Osten, J. Klatt, G. Lippert, B. Dietrich and E. Bugiel: “Surfactant-controlled solid phase epitaxy of germanium on silicon”, Phys. Rev. Lett., Vol. 69, (1992), pp. 450–453. http://dx.doi.org/10.1103/PhysRevLett.69.450[Crossref]
  • [21] Y. Yamamoto: “RHEED-TRAXS study of superstructures induced by Ge and Sn adsorption on a Si(110) surface”, Surface Sci., Vol. 281, (1993), pp. 253–269. http://dx.doi.org/10.1016/0039-6028(93)90639-2[Crossref]
  • [22] Ya.E. Gegusin: Surface diffusion on real crystall surface, In: Surface diffusion and spreading, Ya.E. Gegusin (Ed.), Moscow, Nauka, 1969, pp. 11–77 (in Russian).
  • [23] T. Suzuoka: “Mathematical Analysis of Tracer Surface Diffusion”, J. Phys. Soc. Japan, Vol. 20, (1965), pp. 1259–1270. http://dx.doi.org/10.1143/JPSJ.20.1259[Crossref]
  • [24] G.L. McVay and A.R. DuCharme: “The diffusion of germanium in silicon”, J. Appl. Phys., Vol. 44, (1973), pp. 1409–1410. http://dx.doi.org/10.1063/1.1662371[Crossref]
  • [25] G.L. McVay and A.R. DuCharme: “Diffusion of Ge in SiGe alloys”, Phys. Rev. B, Vol. 9, (1974), pp. 627–631. http://dx.doi.org/10.1103/PhysRevB.9.627[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.