Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2006 | 4 | 2 | 270-276

Article title

Transient properties of a bistable kinetic model with quantum corrections

Content

Title variants

Languages of publication

EN

Abstracts

EN
The transient properties of a Brownian particle moving in a bistable system with quantum corrections are investigated. The Quantum Smoluchowski Equation (QSE) is fully valid for high temperatures; for low temperatures it is valid only in a restricted domain of the state space. The quantum effects in a bistable system stand out for low temperatures. Explicit expressions of the mean first-passage time (MFPT) are obtained by using a steepest-descent approximation. The quantum effects are against the particle moving towards the destination from its original position.

Publisher

Journal

Year

Volume

4

Issue

2

Pages

270-276

Physical description

Dates

published
1 - 6 - 2006
online
1 - 6 - 2006

Contributors

author
  • School of Physics and Telecommunication Engineering, South China Normal University, 510006, GuangZhou, China
author
  • School of Physics and Telecommunication Engineering, South China Normal University, 510006, GuangZhou, China
author
  • Department of Physics, South China University of Technology, 510641, GuangZhou, China
  • Department of Physics, ZhongShan University, 510275, GuangZhou, China

References

  • [1] P. Reimann: “Brownian motors: noisy transport far from equilibrium”, Phys. Reports, Vol. 361, (2002), pp. 57–265. http://dx.doi.org/10.1016/S0370-1573(01)00081-3[Crossref]
  • [2] Y. Jia and J. R. Li: “Steady-state analysis of a bistable system with additive and multiplicative noises”, Phys. Rev. E, Vol. 53, (1996), pp. 5786–5792. http://dx.doi.org/10.1103/PhysRevE.53.5786[Crossref]
  • [3] B. Q. Ai, X.J. Wang, G.T. Liu and L.G. Liu: “Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations”, Phys. Rev. E, Vol. 68, (2003), art. 061105; B.Q. Ai, X.J. Wang, G.T. Liu and L.G. Liu: “Correlated noise in a logistic growth model”, Phys. Rev. E, Vol. 67, (2003), art. 022903; B.Q. Ai, G.T. Liu, H.Z. Xie and L.G. Liu: “Efficiency and current in a correlated ratchet”, Chaos, Vol. 14, (2004), pp. 957–962.
  • [4] B.Q. Ai, L.Q. Wang and L.G. Liu: “Transport reversal in a thermal ratchet”, Phys. Rev. E, Vol. 72, (2005), art. 031101.
  • [5] R.D. Astumian and P. Hanggi: “Brownian Motors”, Phys. Today, Vol. 55, (2002), pp. 33–39; C.R. Doering, B. Ermentrout and G. Oster: “Rotary DNA motors”, Biophys. J., Vol. 69, (1995), pp. 2256–2267. [Crossref]
  • [6] D.J. Wu, L. Cao and S.Z. Ke: “Bistable kinetic model driven by correlated noises: Steady-state analysis”, Phys. Rev. E, Vol. 50, (1994), pp. 2496–2502. http://dx.doi.org/10.1103/PhysRevE.50.3560[Crossref]
  • [7] W. Hersthemke and R. Lefever: Noise-induced Transitions, Springer-Verlag, Berlin, 1984.
  • [8] M. Kus and K. Wodkiewicz: “Mean first-passage time in the presence of telegraph noise and the Ornstein-Uhlenbeck process”, Phys. Rev. E, Vol. 47, (1993), pp. 4055–4062. http://dx.doi.org/10.1103/PhysRevE.47.4055[Crossref]
  • [9] D.C. Mei, G.Z. Xie, L. Cao and D.J. Wu: “Mean first-passage time of a bistable kinetic model driven by cross-correlated noises”, Phys. Rev. E, Vol. 59, (1999), pp. 3880–3883. http://dx.doi.org/10.1103/PhysRevE.59.3880[Crossref]
  • [10] J.M. Porra and K. Lindenberg: “Mean first-passage times for systems driven by equilibrium persistent-periodic dichotomous noise”, Phys. Rev. E, Vol. 52, (1995), pp. 409–417. http://dx.doi.org/10.1103/PhysRevE.52.409[Crossref]
  • [11] T.G. Venkatesh and L.M. Patnaik: “Adiabatic approach to mean-first-passage-time computation in bistable potential with colored noise”, Phys. Rev. E, Vol. 47, (1993), pp. 1589–1594. http://dx.doi.org/10.1103/PhysRevE.47.1589[Crossref]
  • [12] F. Laio, A. Porporato, L. Ridolfi and I. Rodriguez-Iturbe: “Mean first passage times of processes driven by white shot noise”, Phys. Rev. E, Vol. 63, (2001), art. 036105.
  • [13] U. Behn, R. Muller and P. Talkner: “Mean first-passage time for systems driven by pre-Gaussian noise: Natural boundary conditions”, Phys. Rev. E, Vol. 47, (1993), pp. 3970–3974. http://dx.doi.org/10.1103/PhysRevE.47.3970[Crossref]
  • [14] Y. Jia and J.R. Li: “Transient properties of a bistable kinetic model with correlations between additive and multiplicative noises: Mean first-passage time”, Phys. Rev. E, Vol. 53, (1996), pp. 5764–5768. http://dx.doi.org/10.1103/PhysRevE.53.5764[Crossref]
  • [15] J. Ankerhold, P. Pechukas and H. Grabert: “Strong Friction Limit in Quantum Mechanics: The Quantum Smoluchowski Equation”, Phys. Rev. Lett., Vol. 87, (2001), art.086802. [Crossref]
  • [16] P. Pechukas, J. Ankerhold and H. Grabert: “Quantum Smoluchowski equation”, Ann. Phys. (Leipzig), Vol. 9, (2000), pp. 794–803; S.K. Banik, B.C. Bag and D.S. Ray: “Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions”, Phys. Rev. E, Vol. 65, (2002), art. 051106. http://dx.doi.org/10.1002/1521-3889(200010)9:9/10<794::AID-ANDP794>3.0.CO;2-J[Crossref]
  • [17] L. Machura, M. Kostur, P. Hanggi, P. Talkner and J. Luczka: “Consistent description of quantum Brownian motors operating at strong friction”, Phys. Rev. E, Vol. 70, (2004), art. 031107.
  • [18] R.F. Fox: “Functional-calculus approach to stochastic differential equations”, Phys. Rev. A, Vol. 33, (1986), pp. 467–476; C.W. Gardiner: Handbook of Stochastic Methods, Springer Series in Synergetics, Vol. 13, Springer-Verlag, Berlin, 1983. http://dx.doi.org/10.1103/PhysRevA.33.467[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-006-0010-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.