Preferences help
enabled [disable] Abstract
Number of results
2006 | 4 | 2 | 210-222
Article title

Translation-rotation coupling and heat transfer in orientationally-disordered phase of CCl4

Title variants
Languages of publication
The isochoric thermal conductivity of an orientationally-disordered phase of CCl4 is analysed within a model in which heat is transferred by phonons and above the phonon mobility edge by ”diffusive” modes migrating randomly from site to site. The mobility edge ω0 is found from the condition that the phonon mean-free path cannot become smaller than half the phonon wavelength. The contributions of phonon-phonon, one-, and two-phonon scattering to the total thermal resistance of solid CCl4 are calcualted under the assumption that the different scattering mechanisms contribute additively. An increase in the isochoric thermal conductivity with temperature is explained by suppression of phonon scattering at rotational excitations due to a decrease in correlation in the rotation of neighbouring molecules.
Physical description
1 - 6 - 2006
1 - 6 - 2006
  • [1] R. Berman: Thermal Conduction in Solids, Clarendon Press, Oxford, 1976.
  • [2] F. Clayton and D. Batchelder: “Temperature and volume dependence of the thermal conductivity of solid argon”, J. Phys. Chem., Vol. 6, (1973), pp. 1213–1228.
  • [3] I.N. Krupskii and V.G. Manzhelii: “Multiphonon interaction and the thermal conductivity of crystal argon, krypton and xenon”, Sov. J. JETP, Vol. 28, (1968), pp. 1090–1097.
  • [4] V.A. Konstantinov: “Heat transfer by low-frequency phonons and “diffusive” modes in molecular crystals”, Low Temp. Phys., Vol. 29, (2003) pp. 422–451.[Crossref]
  • [5] O.I. Pursky, N.N. Zholonko and V.A. Konstantinov: “Influence of rotational motion of molecules on the thermal conductivity of solid SF6, CHCl3, C6H6, and CCl4”, Low Temp. Phys., Vol. 29, (2003), pp. 771–776.
  • [6] R. Rudman: “Carbon tetrachloride: A A new crystalline modification”, Science, Vol. 154, (1966) pp. 45–46.
  • [7] R. Powers and R. Rudman: “Polymorphism of the crystalline methylchlormethane compounds. The structure of the ordered phases of the carbon tetrahalides”, J. Chem. Phys., Vol. 72, (1980) pp. 1629–1634.[Crossref]
  • [8] Y.N. Sherwood (Eds.): The plastically crystalline state (Orientationally - disordered crystals), John Wiley&Sons, Chichester-New York-Brisbane-Toronto, 1979.
  • [9] D.E. O’Reilly, E.M. Peterson and C.R. Scheie: “Molecular rotation in liquid and solid carbon tetrachloride”, J. Chem. Phys., Vol. 60, (1974), pp. 1603–1606.[Crossref]
  • [10] F.J. Bartoli and T.A. Litovitz: “Orientational motions in liquids”, J. Chem. Phys., Vol. 56, (1972), pp. 413–425.[Crossref]
  • [11] M. Djaburov et al.: “Liquid and plastic crystals phases”, J. Chem. Phys., Vol. 66, (1977), pp. 5748–5757.[Crossref]
  • [12] J. Zuk, H. Kiefte and M.J. Clouter: “Elastic constants of the orientationally disordered phase Ib of CCl4”, J. Chem. Phys., Vol. 95, (1991) pp. 1950–1953.[Crossref]
  • [13] R.G. Ross and P. Andersson: “Thermal conductivity and phase diagram of CCl4 under pressure”, Mol. Phys., Vol. 36, (1978) pp. 39–47.[Crossref]
  • [14] V.A. Konstantinov, V.G. Manzhelii and S.A. Smirnov: “Isochoric thermal conductivity and thermal pressure of solid CCl4”, Phys. St. Sol. B, Vol. 163, (1991), pp. 368–374.
  • [15] R.M. Lynden-Bell and K.H. Michel: “Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals”, Rev. Mod. Phys., Vol. 66, (1994), pp. 721–762.[Crossref]
  • [16] W.J. Briels, A.P.J. Jansen and A. van der Avoird: “Translational-rotational coupling in strongly anharmonic molecular crystals with orientational disorder”, J. Chim. Phys. Phys. Chim. Biologique, Vol. 82, (1985), pp. 125–136.
  • [17] A.B. Zahlan (Ed.): Exitons, magnons and phonons in molecular crystals, University Press, Cambridge, 1968.
  • [18] V.G. Manzhelii and Yu.A. Freiman (Eds.): Physics of Cryocrystals, AIP Press, Woodbury, New York, 1997.
  • [19] S.H. Walmsley: “Theory of phonon-phonon interactions in molecular crystals”, J. Chim. Phys. Phys. Chim. Biologique, Vol. 82, (1985), pp. 117–124.
  • [20] C. Deusch and A. Huller: “Phonon damping by translation-rotation coupling in orientationally disordered molecular crystals”, Z. Phys. B.-Condensed Matter, Vol. 86, (1992), pp. 411–418.[Crossref]
  • [21] V.G. Manzhelii et. al.: “Phonon-libron coupling and thermal conductivity of the simplest molecular crystals”, Sov. J. Low Temp. Phys., Vol. 1, (1975), pp. 624–672.
  • [22] I.N. Krupskii, L.A. Koloskova and V.G. Manzhelii: “Thermal conductivity of deuteromethane”, J. Low Temp. Phys., Vol. 14, (1974), pp. 403–410.[Crossref]
  • [23] H. Yasuda: “Thermal conductivity of solid CH4 and CD4”, J. Low. Temp. Phys., Vol. 31, (1978), pp. 223–256.[Crossref]
  • [24] W. Bauernfeind, J. Keller and U. Schroder: “Theory of thermal conductivity in molecular crystals, application to alcali cyanides”, J. Physique, Vol. 42, (1981), pp. 247–249.[Crossref]
  • [25] K. Kawasaki: “On the behavior of the thermal conductivity near the magnetic transition point”, Progr. Theor. Phys., Vol. 29, (1963), pp. 801–816.[Crossref]
  • [26] T. Yamamoto, Y. Kataoka and K. Okada: “Theory of phase transitions in solid methane. Centering around phase II in solid methane”, J. Chem. Phys., Vol. 11, (1978), pp. 2701–2730.
  • [27] M.C. Roufosse and P.G. Klemens: “Lattice thermal conductivity of minerals at high temperatures”, J. Geophys. Res., Vol. 79, (1974), pp. 703–705.[Crossref]
  • [28] D.G. Cahill, S.K. Watson and R.O. Pohl: “Lower limit to thermal conductivity of disordered crystals”, Phys. Rev. B, Vol. 46, (1992), pp. 6131–6140.[Crossref]
  • [29] A.J.H. McGaughey and M. Kaviany: “Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon”, Int. J. Heat Mass Transfer, Vol. 47, (2004), pp. 1783–1798.[Crossref]
  • [30] A.J.H. McGaughey and M. Kaviany: “Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part II. Complex silica structures”, Int. J. Heat Mass Transfer, Vol. 47, (2004), pp. 1799–1816.[Crossref]
  • [31] O.I. Pursky and N.N. Zholonko: “Heat transfer in high-temperature phase of solid SF6”, Phys. Sol. St., Vol. 46, (2004), pp. 2015–2020.[Crossref]
  • [32] V.M. Kozhin: “Value of dencity shocks at phase transitions in carbon tetrachloride”, Kristallografia, Vol. 14, (1969), pp. 732–734 (in Russian).
  • [33] A.P. Isakina and A.I. Prokhavatilov: “Structure and thermodynamic properties of SF6”, Low Temp. Phys., Vol. 19, (1993), pp. 142–147.
  • [34] J.A. Morrison and E.L. Richards: “Thermodynamic study of phase transition in carbon tetrachloride”, J. Chem. Thermodyn., Vol. 8, (1976), pp. 505–510.[Crossref]
  • [35] F. Barocchi and R. Vallauri: “Evidence of multipole vibrational-translational relaxation in CCl4”, J. Chem. Phys., Vol. 51, (1969), pp. 10–14.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.