Preferences help
enabled [disable] Abstract
Number of results
2006 | 4 | 2 | 196-209
Article title

Dynamics of two quantum entangled particles interacting with a potential barrier in an EPR experiment

Title variants
Languages of publication
The effect of a position measurement on one component of a two-particle wave packet in a regularized space-momentum entangled state is analyzed. The wave packet interacts in the physical space with a potential barrier. When a position or momentum measurement is performed on one particle, a consequent strong modification of the dynamics of the other particle occurs.
Physical description
1 - 6 - 2006
1 - 6 - 2006
  • [1] A. Einstein, B. Podolsky and N. Rosen: “Can Quantum-Mechanical Description of Reality Be Considered Complete?”, Phys. Rev. Series II, Vol. 47, (1935), pp. 777–780 [Crossref]
  • [2] D. Bohm: Quantum Theory, Prentice Hall, Englewood Cliffs, 1951.
  • [3] J.S. Bell: “On the Einstein Podolsky Rosen Paradox”, Physics, Vol. 1, (1964), p. 195.
  • [4] J.S. Bell: Speakable and unspeakable in quantum mechanics, Cambridge University Press, Cambridge, U.K., 1987.
  • [5] H.J. Kimble and D.F Walls: “Special issues on squeezed states of light”, J. Opt. Soc. Am. B, Vol. 4, (1987), pp. 1450–1741[Crossref]
  • [6] A. Lamas-Linares, J.C. Howell and R.D. Bouwmeester: “Stimulated emission of polarization-entangled photons”, Nature, Vol. 412, (2001), pp. 887–890.[Crossref]
  • [7] B. Julsgaard, A. Kozhekin and E.S. Polzik: “Experimental long-lived entanglement of two macroscopic objects”, Nature, Vol. 413, (2001), pp. 400–403.[Crossref]
  • [8] Ch. Silberhorn, P.K. Lam, O. Weiss, F. Koenig, N. Korolkova and G. Leuchs: “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber”, Phys. Rev. Lett., Vol. 86, (2001), pp. 4267–4270.[Crossref]
  • [9] M.D. Reid and P.D. Drummond: “Quantum Correlations of Phase in Nondegenerate Parametric Oscillation”, Phys. Rev. Lett., Vol. 60, (1988), pp. 2731–2735.[Crossref]
  • [10] M.D. Reid: “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification”, Phys. Rev. A, Vol. 40, (1089), pp. 913–923.[Crossref]
  • [11] K. Banaszek and K. Wódkiewicz: “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation”, Phys. Rev. A, Vol. 58, (1998), pp. 4345–4347.[Crossref]
  • [12] A.S. Parkins and H.J. Kimble: “Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms”, Phys. Rev. A, Vol. 61, (2000), art. 052104. [Crossref]
  • [13] S. Lloyd, J.H. Shapiro and F.N.C. Wong: “Quantum magic bullets by means of entanglement”, J. Opt. Soc. Am. B, Vol. 19, (2002), pp. 312–318. [Crossref]
  • [14] Z.Y. Ou, F. Pereira, H.J. Kimble and K.C. Peng: “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables”, Phys. Rev. Lett., Vol. 68, (1992), pp. 3663–3666.[Crossref]
  • [15] Z.Y. Ou, S.F. Pereira and H.J. Kimble: “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification”, Appl. Phys. B, Vol. 55, (1992), pp. 265–278.[Crossref]
  • [16] J.F. Clauser and A. Shimony: “Bell’s theorem. Experimental tests and implications”, Rep. Prog. Phys., Vol. 41, (1978), pp. 1881–1927.[Crossref]
  • [17] A. Aspect, P. Grangier and G. Roger: “Experimental Tests of Realistic Local Theories via Bell’s Theorem”, Phys. Rev. Lett., Vol. 47, (1981), pp. 460–463.[Crossref]
  • [18] M. D. Reid: “Violations of Bell inequalities for measurements with macroscopic uncertainties: What it means to violate macroscopic local realism”, Phys. Rev. A, Vol. 62, (2000), art. 022110. [Crossref]
  • [19] A. Peres: “Separability Criterion for Density Matrices”, Phys. Rev. Lett., Vol. 77, (1996), pp. 1413–1415.[Crossref]
  • [20] P. Horodecki: “Separability criterion and inseparable mixed states with positive partial transposition”, Phys. Lett. A, Vol. 232, (1997), pp. 333–339.[Crossref]
  • [21] R. Simon: “Peres-Horodecki Separability Criterion for Continuous Variable Systems”, Phys. Rev. Lett., Vol. 84, (2000), pp. 2726–2729.[Crossref]
  • [22] Lu-Ming Duan, G. Giedke, J.I. Cirac and P. Zoller: “Inseparability Criterion for Continuous Variable Systems”, Phys. Rev. Lett., Vol. 84, (2000), pp. 2722–2725.[Crossref]
  • [23] S. Mancini, V. Giovannetti, D. Vitali and P. Tombesi: “Entangling Macroscopic Oscillators Exploiting Radiation Pressure”, Phys. Rev. Lett., Vol. 88, (2002), art. 120401. [Crossref]
  • [24] M. D’Angelo, Yo-Ho Kim, S.P. Kulik and Y. Shih: “Identifying Entanglement Using Quantum Ghost Interference and Imaging”, Phys. Rev. Lett., Vol. 92, (2004), art. 233601.
  • [25] D.V. Strekalov, A.V. Sergienko, D.N. Klyshko and Y.H. Shih: “Observation of Two-Photon “Ghost” Interference and Diffraction”, Phys. Rev. Lett., Vol. 74, (1995), pp. 3600–3603.[Crossref]
  • [26] T.B. Pittman, Y.H. Shih, D.V. Strekalov and A.V. Sergienko: “Optical imaging by means of two-photon quantum entanglement”, Phys. Rev. A, Vol. 52, (1995), pp. R3429–R3432.[Crossref]
  • [27] J.J.V. Maestri, R.H. Ladau and M.J. Paez: “Two-Particle Schroedinger Equation Animations of Wavepacket-Wavepacket Scattering”, Am. J. Phys., Vol. 68, (2000), pp. 1113–1118.[Crossref]
  • [28] T. Iitaka: “Solving the time-dependent Schrödinger equation numerically”, Phys. Rev. E, Vol. 49, (1994), pp. 4684–4690.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.