Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 2 | 155-167

Article title

Biophysical changes induced by cholesterol on phosphatidylcholine artificial biomembranes containing alamethicin oligomers


Title variants

Languages of publication



Cholesterol is an important constituent of eukaryotic cell membranes, whose interaction with phospholipids leads to a broad range of biological roles, such as: maintenance of proper fluidity, formation of raft domains, reduction of passive permeability of various chemical species through the bilayer (e.g., glucose, glycerol, K+, Na+ and Cl− ions), and increased mechanical strength of the membrane. In this work we studied an interesting paradigm, as to whether cholesterol-containing phosphatidylcholine biomembranes influence the kinetics and transport features of alamethicin oligomers embedded into it. We demonstrate that moderate relative amounts of cholesterol increase the electrical conductance of various sub-conductance states of the alamethicin oligomer, caused probably by a non-monotonic change in the lumped dipole moment of the biomembrane. Our data suggest that biomembrane stiffness caused by cholesterol, visibly modifies the association-dissociation rates of alamethicin oligomerization in the biomembrane. Moreover, increasing concentrations of cholesterol seem to lead to more stable intermediate alamethicin oligomers. We show that in the presence of cholesterol, as the diameter of the alamethicin oligomer increases, so does the time of another monomer to get picked up. These results brings into focus the interesting issue of how oligomerization of proteins affects their interaction affinities for membrane-based lipids.










Physical description


1 - 6 - 2006
1 - 6 - 2006


  • Dept. of Biophysics and Medical Physics, Faculty of Physics, ’Alexandru I. Cuza’ University, R-6600, Iasi, Romania
  • Dept. of Biophysics and Medical Physics, Faculty of Physics, ’Alexandru I. Cuza’ University, R-6600, Iasi, Romania


  • [1] M. Bloom, E. Evans and O.G. Mouritsen: “Physical properties of the fluid lipidbilayer component of cell membranes: A perspective”, Q. Rev. Biophys., Vol. 24, (1991), pp. 293–397. http://dx.doi.org/10.1017/S0033583500003735[Crossref]
  • [2] J. Katsaras and T. Gutberlet (Eds.): Lipid bilayers: Structure and interactions, Springer-Verlag, Berlin, 2001.
  • [3] A. Zachowski: “Phospholipids in animal eukaryotic membanes: Transverse asymmetry and movement”, Biochem. J., Vol. 294, (1993), pp. 1–14.
  • [4] F.R. Maxfield: “Plasma membrane microdomains”, Curr. Opin. Cell Biol., Vol. 14, (2002), pp. 483–487. http://dx.doi.org/10.1016/S0955-0674(02)00351-4[Crossref]
  • [5] K. Bloch: “Cholesterol: evolution of structure and function”, In: D.E. Vance and J.E. Vance (Eds.): Biochemistry of Lipids, Lipoproteins and Membranes, Elsevier, Amsterdam, The Netherlands, 1991, pp. 363–381
  • [6] A. Kusumi, M. Tsuda, T. Akino, S. Ohnishi and Y. Terayama: “Proteinphospholipid-cholesterol interaction in the photolysis of invertebrate rhodopsin”, Biochemistry, Vol. 22, (1983), pp. 1165–1170. http://dx.doi.org/10.1021/bi00274a027[Crossref]
  • [7] O.G. Mouritsen and K. Jørgensen: “Dynamical order and disorder in lipid bilayers”, Chem. Phys. Lipids, Vol. 73, (1994), pp. 2–35.
  • [8] K. Simons and E. Ikonen: “Functional rafts in cell membranes”, Nature, Vol. 387, (1997), pp. 569–572. http://dx.doi.org/10.1038/42408[Crossref]
  • [9] R. Bittman, S. Clejan, S. Lund-Katz and M.C. Phillips: “Influence of cholesterol on bilayers of ester-and ether-linked phospholipids: permeability and 13C-nuclear magnetic resonance measurements”, Biochim. Biophys. Acta., Vol. 772, (1984), pp. 117–126.
  • [10] W.K. Subczynski, A. Wisniewska, J.J. Yin, J.S. Hyde and A. Kusumi: “Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol”, Biochemistry, Vol. 33, (1994), pp. 7670–7681. http://dx.doi.org/10.1021/bi00190a022[Crossref]
  • [11] M.Y. El-Sayed, T.A. Guion and M.D. Fayer: “Effect of cholesterol on viscoelastic properties of dipalmitoylphosphatidylcholine multibilayers as measured by a laser-induced ultrasonic probe”, Biochemistry, Vol. 25, (1986), pp. 4825–4832. http://dx.doi.org/10.1021/bi00365a016[Crossref]
  • [12] M. Bloom and O.G. Mouritsen: “The evolution of membranes”, In: R. Lipowsky and E. Sackmann (Eds.): Structure and Dynamics of Membranes, Elsevier, Amsterdam, 1995, pp. 65–95
  • [13] V.G. Romanenko, Y. Fang, F. Byfield, A.J. Travis, C.A. Vandenberg, G.H. Rothblat and I. Levitan: “Cholesterol sensitivity and lipid raft targeting of KIR 2.1 channels”, Biophys. J., (2004), in press. [Crossref]
  • [14] M. Soom, R. Schonherr, Y. Kubo, C. Kirsch, R. Klinger and S.H. Heinemann: “Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels”, FEBS Lett., Vol. 490, (2001), pp. 49–53. http://dx.doi.org/10.1016/S0014-5793(01)02136-6
  • [15] V.G. Romanenko, G.H. Rothblat and I. Levitan: “Modulation of endothelial inward rectifier K+ current by optical isomers of cholesterol”, Biophys. J., Vol. 83, (2002), pp. 3211–3222.
  • [16] S.L. Keller, S.M. Bezrukov, S.M. Gruner, M.W. Tate, I. Vodyanoy and V.A. Parsegian: “Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids”, Biophys. J., Vol. 65, (1993), pp. 23–27.
  • [17] S.M. Bezrukov, R.P. Rand, I. Vodyanoy and V.A. Parsegian: “Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge”, Faraday Discuss., (1998), pp. 173–183.
  • [18] H.M. Chang, R. Reitstetter, R.P. Mason and R. Gruener: “Attenuation of channel kinetics and conductance by cholesterol: An interpretation using structural stress as a unifying concept”, J. Membrane Biol., Vol. 143, (1995), pp. 51–63. http://dx.doi.org/10.1007/BF00232523[Crossref]
  • [19] R.O. Fox and F.M. Richards: “A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 Å resolution”, Nature, Vol. 300, (1982), pp. 325–330. http://dx.doi.org/10.1038/300325a0[Crossref]
  • [20] H. Duclohier and H. Wroblewski: “Voltage-Dependent Pore Formation and Antimicrobial Activity by Alamethicin and Analogues”, J. Membrane Biol., Vol. 184, (2001), pp. 1–12. http://dx.doi.org/10.1007/s00232-001-0077-2[Crossref]
  • [21] R.J. Clarke: “Effect of lipid structure on the dipole potential of phosphatidylcholine Bilayers”, Biochim. Biophys. Acta., Vol. 1327, (1997), pp. 269–278.
  • [22] T. Luchian, H.S. Shin and H. Bayley: “Kinetics of a three-step reaction observed at the single-molecule level”, Angew. Chem. Int. Ed., Vol. 42, (2003), pp. 1925–1929.
  • [23] B. Eisenberg: “Ionic channels in biological membranes D electrostatic analysis of a natural nanotube”, Cont. Phys., Vol. 39, (1998), pp. 447–466. http://dx.doi.org/10.1080/001075198181775[Crossref]
  • [24] J. Cladera and P. O’shea: “Intramembrane Molecular Dipoles Affect the Membrane Insertion and Folding of a Model Amphiphilic Peptide”, Biophys. J., Vol. 74, (1998), pp. 2434–2442.
  • [25] E. Corvera, O.G. Mouritsen, M.A. Singer and M.J. Zuckerman: “The permeability and the effect of acyl chain length for phospholipids bilayers containing cholesterol: theory and experiment”, Biochim. Biophys. Acta., Vol. 1107, (1992), pp. 261–270.
  • [26] S.W. Hui and N.B. He: “Molecular organization in cholesterol-lecithin bilayers by x-ray and electron diffraction measurements”, Biochemistry, Vol. 22, (1983), pp. 1159–1164. http://dx.doi.org/10.1021/bi00274a026[Crossref]
  • [27] S. Raffy and J. Teissie: “Control of lipid membrane stability by cholesterol content”, Biophys. J., Vol. 76, (1999), pp. 2072–2080.
  • [28] D. Marsh: “Peptide models for membrane channels”, Biochem. J., Vol. 315, (1996), pp. 345–361.
  • [29] G. Molle, J.Y. Dugast, G. Spach and H. Duclohier: “Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds”, Biophys. J., Vol. 70, (1996), pp. 1669–1675.
  • [30] G.A. Woolley and B.A. Wallace: “Model Ion Channels: Gramicidin and Alamethicin”, J. Membrane Biol., Vol. 129, (1992), pp. 109–136.
  • [31] V. Borisenko, M.S.P. Sansom and G.A. Woolley: “Protonation of Lysine Residues Inverts Cation/Anion Selectivity in a Model Channel”, Biophys. J., Vol. 78, (2000), pp. 1335–1348.
  • [32] B. Neumcke: “Ion flux across lipid bilayer membranes with charged surfaces”, Biophysik, Vol. 6, (1970), pp. 231–240. http://dx.doi.org/10.1007/BF01189084[Crossref]
  • [33] J.E. Bell and C. Miller: “Effects of phospholipid surface charge on ion conduction in the K channel of sarcoplasmic reticulum”, Biophys. J., Vol. 45, (1984), pp. 279–287.
  • [34] O.V. Krasilnikov and R.Z. Sabirov: “Ion transport through channels formed in lipid bilayers by Staphylococcus aureus alpha-toxin”, Gen. Physiol. Biophys., Vol. 8, (1989), pp. 213–222.
  • [35] V. Levandy, M. Colombini, X.X. Li and V.M. Aguilella: “Electrostatics explain the shift in VDAC gating with salt activity gradient”, Biophys. J., Vol. 82, (2002), pp. 1773–1783. http://dx.doi.org/10.1016/S0006-3495(02)75528-8[Crossref]
  • [36] M. Misakian and J.J. Kasianowicz: “Electrostatic influence on ion transport through the aHL channel”, J. Membrane Biol., Vol. 195, (2003), pp. 137–146. http://dx.doi.org/10.1007/s00232-003-0615-1[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.